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EXECUTIVE SUMMARY 

Turning movement count data is key to evaluating the performance of signalized intersections and is also a 

crucial component of data-driven decision-making processes of transportation agencies. Unfortunately, the 

availability of quality turning movement count data is not the norm for transportation agencies. In fact, the 

2012 National Traffic Signal Report Card conducted by the National Transportation Operations Coalition 

identified traffic monitoring and data collection practices in the U.S. as weak and thus assigning the 

practices an “F” grade, a grade that did not change after a similar assessment was conducted in 2007. 

Even as technology advances, some of the current methods used for turning movement counts that 

are considered standard practice are based on manual procedures. These procedures, while accurate if 

performed correctly, limit the amount of data available to transportation agencies due to the reliance on 

human observers. Therefore, it is not a surprise that automated methods have been developed as alternatives 

to manual procedures. Temporary automated counters are often installed by an intersection to obtain volume 

data for periods longer than what is possible with human observers but these are still deployed for a limited 

period of time, typically less than a week, and as such are unable to capture cyclical changes in traffic. 

The use of radar-based vehicle detection systems as an alternative to loop detectors has grown over 

the years and is arguably an underutilized vehicle detection technology. The underutilization argument is 

based on radar-based vehicle detection systems being capable of continuously tracking the position of 

vehicles but only reporting to the controller the presence of vehicles over a detection zone that emulates the 

location of an inductive loop. If vehicle trajectory data from an intersection approach is continuously 

logged, monitoring vehicle volumes over long periods of times is possible, including breaking down the 

volume into movements by analyzing the paths of the vehicle trajectories regardless of lane configurations. 

Project Results 

Results from the project include the development of a data collection device capable of logging vehicle 

trajectories from intersections instrumented with a commercially available radar-based vehicle detection 

system. The device can be installed inside a signal cabinet, is independent of the controller platform, and 

was the result of work by the commercialization partner (MS Sedco) in coordination with the research team. 

One of the advantages of the data collection device is that it serves as a platform for algorithms that make 

performance measures monitoring possible. An example of these algorithms is the one developed as part 

of the Type 1 IDEA project which was streamlined and improved as part of the Type 2 project described in 

this report. The data collection device implements some of the key noise removal techniques described in 

this report thus making it possible to improve the quality of turning movement counts generated based on 

the trajectory data collected. Improvements made to the noise removal and summary procedures made 

commercializing the product possible and open the doors for future improvements and the introduction of 

analysis procedures beyond turning movement counts. 
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Previous Accuracy Findings and Improvement Opportunities 

A classification algorithm developed as part of the Type 1 IDEA project can generate turning movement 

counts that were over 90% accurate based on the type of data obtained using the data collection device 

described. Accuracy was measured by comparing ground-truth vehicle volume with volume reported by a 

classification algorithm. This accuracy was deemed sufficient since it is similar to that claimed by existing 

products with less functionality and capabilities. However, a review of the results and a detailed side-by-

side comparison of trajectory data and video from signalized intersection revealed that the best approach to 

improve the performance of the previously developed classification algorithm was to improve the accuracy 

of the underlying data. 

To improve the accuracy of the underlying data, noise removal procedures were developed that 

achieve similar levels of volume accuracy by focusing on accurately representing trajectories and 

eliminating noise. The noise removal procedure keeps track of vehicles that enter the intersection and 

implementation of key aspects of the procedure was possible by relying on the data collection device 

commercialized by the commercialization partner. Development of the noise removal procedure required a 

characterization of the typical noise found in the dataset to gain a detailed understanding of the noise found 

in a typical dataset of vehicle trajectories. Finally, a procedure for assigning lane values to vehicle 

trajectories was also identified and is documented in this report. 

Commercialization Status and Next Steps 

An initial version of a data collection device capable of implementing algorithms to obtain performance 

measures from signalized intersections has been commercialized by the commercialization partner (MS 

Sedco). The commercialization partner released an initial version of the data collection and analysis product 

in the Summer of 2019. The data collection device implements the key noise removal techniques described 

in this report and can be a platform for future performance monitoring techniques. Furthermore, it 

implements procedures to breakdown vehicle volume at an intersection approach by lane. As a result, 

adding classification by movement based on a streamlined version of procedures developed as part of the 

Type 1 IDEA project can be accomplished via a software update.  

Once the necessary commercialization steps with the licensing arm of the University of Wisconsin-

Madison are cleared, the commercialization partner plans to integrate a streamlined version of the 

classification algorithm into their product via a software update.  Adding the classification algorithm to the 

commercialized data collection product as a software update will be possible because of the  joint effort 

between the commercialization partner and the research team to define a strong and flexible underlying 

software architecture and data storage techniques. 
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CHAPTER 1. INTRODUCTION 
Turning movement count data, i.e., vehicle volume classified by time periods into specific movements, 

approaches, is key to evaluating the performance of signalized intersections both from the safety and 

operational perspective. Turning movement counts are also a crucial component of data-driven decision-

making processes used by transportation agencies. Unfortunately, having quality turning movement count 

data is not the norm for transportation agencies. In fact, the 2012 National Traffic Signal Report Card 

conducted by the National Transportation Operations Coalition identified traffic monitoring and data 

collection practices in the U.S. as weak and thus assigning the practices an “F” grade [1], a grade that did 

not change after a similar assessment was conducted in 2007 [2]. 
Even as technology advances, some of the currents methods that are used to collect turning 

movement count data and that are considered standard practice are still based on manual procedures. These 

manual procedures, while accurate if performed correctly, limit the amount of data available to agencies 

due to the reliance on human observers. Automated methods that are often based on image processing 

techniques are often installed by an intersection to obtain volume data for periods longer than what is 

possible with human observers but these are still deployed for a limited period of time, typically less than 

a week, and as such are a temporary solution unable to capture cyclical changes in traffic. 

1.1 IDEA PRODUCT 

Radar-based vehicle detection technologies have grown in use over time as an alternative to traditional 

loop-based vehicle detection at signalized intersections. In collaboration with a commercialization partner 

(MS Sedco), the research team developed data collection and analysis procedures capable of analyzing the 

trajectories of vehicles on an intersection approach and classifying those trajectories into vehicle 

movements irrespective of the lane used by the vehicle. In other words, the classification of vehicle 

trajectories into movements was demonstrated as feasible even for vehicles using a shared lane. The 

feasibility was demonstrated as part of a Type 1 project [3]. As part of a Type 2 project, the quality of the 

data available for analysis was improved with new noise removal techniques; thus, simplifying the analysis 

procedures needed to classify vehicles into movements. The research team also worked closely with the 

commercialization partner on the development of a data collection device commercialized in the Summer 

of 2019. Finally, a framework that will make it possible to obtain additional performance measures beyond 

what was thought initially possible was also established.  

1.1.1 Concept and Innovation 

A limitation of existing vehicle detection systems is that, in general, even when the underlying technology 

is significantly more advanced than loop detectors, vehicle detection systems continue to emulate the 

behavior of inductive loop detectors by communicating the presence of vehicles on an intersection approach 
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using zone-based position. While there are reasons for communicating the presence of vehicles at specific 

zones within an intersection approach, such as algorithms that rely on this type of data to generate 

performance measures, such a narrow view of performance monitoring leads to ignoring valuable 

information about the position of vehicles on an intersection approach. For example, radar-based vehicle 

detection can continuously track the position of vehicles on an intersection approach, but the underlying 

trajectory data is only used for communicating the presence of a vehicle to the signal controller once a 

vehicle is within a detection zone. The remaining underlying data is ignored. 
 Data collection procedures capable of monitoring the underlying trajectory data of a commercially 

available radar-based vehicle detection system were developed. The procedures can log vehicle trajectories 

without interfering with the required interactions between the radar sensor and the signal controller that 

makes emulating loop detectors possible. By storing vehicle trajectory data, advanced performance 

measures can be obtained. Examples of performance measures that can be obtained include turning 

movement counts even at intersections with shared lanes, something that can’t be obtained by analyzing 

loop-based data unless supplemental loops are installed.  

In the research project described in this report, noise removal and filtering techniques were also 

developed to improve the quality of the existing data collection and analysis procedures. This innovation 

will make it possible to obtain turning movement counts and will also enable the monitoring of other 

performance measures. All of this will be possible by deploying a small data collection device installed 

inside the signal cabinet that is independent of the signal controller, thus facilitating the adoption of the 

technology. Connectivity and configuration of the device are enabled through a web server thus providing 

for easy data analysis and configuration via a web browser. Interacting with the device is possible over the 

network or via a wireless network activated by the device near the signal cabinet. 

1.2 PREVIOUS WORK AND OPPORTUNITIES FOR IMPROVEMENT 

A classification algorithm was previously implemented using the R programming language and by relying 

on other software tools that typically run on desktop computers. The algorithm was found to provide an 

accurate representation of the vehicle volume at signalized intersections. Through discussion with our 

commercialization partner, based on additional feedback received, and based on the experience of the 

research team, numerous changes to the underlying procedures and supporting platform were identified as 

recommended or needed to position the research as a commercially viable product successfully. The 

sections ahead summarize some of these recommended changes. Final implementation of these changes 

will depend on final decisions made by the commercialization partner but as will be described throughout 

this report. A number of these changes have already made it to a data collection system commercialized in 

the Summer of 2019 by the commercialization partner. 
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1.2.1 Changes to Supporting Platform 

One of the limitations of the previous research is the reliance on software tools, and an operating system, 

typically associated with desktop platforms. Changes should be made to move the data collection and 

analysis procedures to a Linux-based operating system. A move towards a Linux-based operating system 

will make it possible to create a data collection and analysis platform that can run on devices such as the 

Raspberry Pi as well as on custom hardware, thus ensuring the technical portability of the platform in the 

future. For example, the code base that supports the data collection and analysis processes should be 

portable to other processor architectures thus making it possible to be deployed as part of other hardware 

products. 

1.2.2 Changes to Data Collection Procedure 

The previous data collection approach was focused on obtaining vehicle trajectory data with limited vehicle 

summary information. This approach forced the analysis procedures to focus on removing noise in the 

dataset and filtering unnecessary vehicle trajectories. An updated version of the data collection procedure 

should summarize vehicle trajectory data and provide additional information that can be used by a 

simplified version of the movement classification algorithm as well as other performance monitoring 

procedures. Better noise removal techniques should be developed as well as lane classification techniques 

to support better decision making by classification algorithms. Summary trajectory data should be exposed 

over the network to allow a simplified version of the analysis procedures to query the data and generate 

performance measures. 

1.2.3 Implementation of Web-Based Client-Side Analysis Procedures 

The previously developed analysis procedures rely on software tools that are not well-suited for 

commercialization. For example, the classification algorithm was implemented in the R programming 

language and relied on supplemental packages to analyze vehicle trajectory data. And while the R 

programming language provides an excellent tool for research and prototyping, using the language on a 

commercial product introduces unnecessary complexities into the commercialization process. Therefore, it 

is recommended that a client-based approach to data analysis be implemented. In the recommended client-

based approach, the purpose of the data collection system installed inside a signal cabinet will be to collect 

and summarize vehicle trajectory data but not conducting any analysis, i.e., implement the changes 

mentioned in Section 1.2.2. A web page should be served by the data collection system over the network 

containing analysis code written in JavaScript which is executed on the web browser of the user accessing 

the web page. The code served should take advantage of existing visualization libraries that make the 

creation of dynamic charts and analysis of data possible. 
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1.3 OBJECTIVES 

Several of the recommended changes, to prepare the research for commercialization, were implemented 

directly by the commercialization partner (MS Sedco) or will be implemented in the future. The focus of 

the research team was on identifying changes that improve the quality of the final product from the data 

collection and analysis perspective. Therefore, the following were the research objectives of the project: 

• Understand the nature of the noise that is found in vehicle trajectory datasets to develop better noise 

removal procedures. 

• Based on an understanding of the noise in trajectory datasets, develop filtering procedures that 

improve the quality of the data to make the results more reliable. 

• Develop lane classification procedures that can be used to support a more constrained vehicle 

movement prediction procedure to prevent misclassification due to confusions in the trajectory 

dataset downstream of the stop bar. 

1.4 COMMERCIALIZATION STATUS AND NEXT STEPS 

An initial version of a data collection device capable of implementing algorithms to obtain performance 

measures from signalized intersections has been commercialized by the commercialization partner. The 

commercialization partner released an initial version of the device in the Summer of 2019 that implements 

key noise removal techniques described in this report, and that serves as a platform for implementing 

additional performance monitoring techniques in the future. Furthermore, it implements procedures to 

breakdown vehicle volume at an intersection approach by lane. Lessons learned from test deployments on 

3 cities (Appleton, WI, Bloomington, IL, and, Ames, IA) and multiple intersections were key to developing 

the commercialized device. Examples of locations were the device was tested include the intersection of 

East Northland Avenue & North Meade Street (City of Appleton) and the intersection of University 

Boulevard & Highway 30 Westbound Offramp (City of Ames).  

As a result of the underlying device software architecture, adding classification by movement based 

on a streamlined version of procedures developed as part of the Type 1 IDEA project can be achieved via 

a software update. Once the necessary commercialization steps with the licensing arm of the University of 

Wisconsin-Madison are cleared, the commercialization partner plans to integrate a streamlined version of 

the classification algorithm into their product via a software update. This improved version of the 

classification algorithm that will be deployed as a software update will rely on summarized trajectory data 

generated after the application of the key filtering procedures described in this report and will include an 

additional layer of classification by relying on a lane value assigned to each vehicle trajectory. Appendix C 

provides details technical details about the improved version of the classification algorithm and observed 

performance. 
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CHAPTER 2. NOISE REMOVAL AND CHARACTERIZATION PROCEDURES 
From the transportation engineering perspective, existing scientific research has focused on comparing the 

performance of radar-based detection system with other types of detection systems that rely on alternative 

technologies such as video and thermal imaging. That is in addition to comparing the performance against 

traditional detection systems based on inductive loops. The comparisons have primarily focused on 

monitoring the activation of detection zones across different systems due to the presence of vehicles. When 

the data is compared, statistics about missed calls, false calls, stuck-on calls, dropped calls are usually 

produced. In the literature, the percentage of missed calls represent the portion of confirmed vehicles that 

traveled through a zone and that were not detected by the system. Similarly, the percentage of false calls 

represent the portion of calls reported by a detection system that was not the result of a vehicle traveling 

through a zone. The percentage of stuck-on calls represent the portion of calls that remain active after 

vehicles leave the detection zone. Finally, the percentage of dropped calls represent the portion of calls 

associated with the presence of a vehicle that was canceled while the vehicle was still within a zone. 

The evaluation of device performance by comparing missed, false, stuck-on, and dropped calls 

across systems is a valid one for understanding how vehicle detection devices function as a replacement for 

loop-based detection. These types of evaluations have shown that radar-based vehicle detection is a reliable 

replacement for traditional loop detection. As a result, radar-based technology was used as the foundation 

for generating automated turning movement counts at signalized intersections using a classification 

algorithm developed as part of the previously completed NCHRP IDEA Type 1 project.  

As previously mentioned, one of the objectives of the Type 2 project described in this report was 

making the results from the classification algorithm more reliable. One of the areas identified for 

improvements was the nature of the dataset used by the classification algorithm. A key step required to 

improve the dataset used by the classification algorithm is to understand the noise in the dataset and identify 

better filtering procedures. The sections ahead describe the type of noise and recommended procedures for 

the removal of what will be described as ghost vehicle trajectories. It should be noted that the level of noise 

removal and characterization outlined in the sections ahead is not recommended for all potential users of 

the data but instead describe the most detailed approach identified by the research team. In the Plans for 

Implementation chapter, the recommended noise removal approach for implementation is outlined and 

balances what is possible from the research perspective with what is possible (by considering user needs) 

for a final product. 

2.1 THE NEED FOR BETTER NOISE CHARACTERIZATION 

Understanding the typical behaviors observed in a dataset of radar-based vehicle trajectories can help 

eliminate ghost trajectories and clean incorrect portions of trajectories. The term ghost trajectory is used to 
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describe duplicate trajectories usually caused by large and segmented vehicles. Incorrect portions of 

trajectories are often the result of the radar system continuing to assume that a vehicle is stopped upon 

arriving at the intersection while recognizing the eventual departure from the intersection as a new vehicle.  

If ghost and incorrect trajectories are removed from the dataset, the computation of better traffic counts will 

be possible. Therefore, the effort to establish filtering techniques to clean-up vehicle trajectories datasets 

and to characterize the trajectories in the dataset is highlighted. Filtering involves the removal (or trimming) 

of trajectories, while characterization involves the identification of typical behaviors that can be used to 

group trajectories into groups useful for detailed evaluations. No research effort has been found that 

provides a detailed discussion of vehicle trajectory data at the individual vehicle level described in the 

sections ahead. Therefore, the procedures presented are key not only to the completion of the Type 2 project 

described but also to advancing the field of performance measures monitoring. 

2.2 TRAJECTORY SCENARIOS REQUIRING FURTHER FILTERING 

A review of different video and trajectory dataset shows that most trajectories reported by the radar 

accurately represent a vehicle. This is consistent with previous research, which found that radar-based 

vehicle detection systems have a lower percentage of false calls when compared with other detection 

technologies. However, the reviews also revealed that there are instances in which the radar correctly tracks 

a vehicle but generates duplicate trajectories and instances in which trajectories are shown in a false 

collision path. These instances are limited; however, the presence alone demonstrates there are potential 

dataset cleanup procedures that could rely on the characterization of typical errors. One common trend 

found for errors in trajectory reporting was that errors were associated with scenarios that violate the laws 

of physics, i.e., trajectory errors could be easily identified because two different vehicles are reported as 

occupying the same space at the same time. Five types of errors found in trajectory datasets are discussed 

ahead as Type A, B, C, D, or D trajectories. 

2.2.1 Type A: Converging Trajectories 

Figure 1 shows an example of a trajectory error caused by the radar incorrectly converging the path of 

vehicles into a single point. Figure 1a shows vehicles detected by the radar, while Figure 1b shows the radar 

representation of the dataset. Radar data for the timestamp shown in Figure 1a was accurate. However, 

when the vehicles started moving vehicle 1 and 4 were reported by the radar as been on the same spot at 

the same time (Figure 1c). Such a pattern would be characteristic of a crash; however, the data shows 

vehicle 1 disappearing while vehicle 4 continued moving without interruptions. 
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Figure 1. Type A - Convergence of Trajectories 

 

2.2.2 Type B: Ghost Trajectories 

Ghost trajectories are a type of trajectory error in which two different vehicle trajectories are reported for 

the same vehicle by the radar. These are often temporary, but there are instances in which the duration (start 

and end based on time) is similar to that of a full trajectory. Figure 2 and Figure 3 show examples of ghost 

trajectories. In both figures, vehicle 1 in the video screenshot is represented by two different sets of 

trajectory points shown in blue/red. 

2.2.3 Type C: Segmented Trajectories 

A segmented trajectory is a vehicle trajectory that has been split into two by the radar. A segmented 

trajectory is the result of a vehicle been dropped by the radar and then detected again as a new vehicle. 

When detected again, a shift in the position reported can change, thus creating a theoretical conflict, i.e., 

different vehicles on the same location at the same time. Figure 4a shows two vehicles detected by the radar 

while Figure 4b shows that for the most upstream vehicle, two different unique trajectories are associated 

with the vehicle. These two unique trajectories overlap in space-time temporarily and when the overlap is 

ignored, and the two trajectories are combined, the path followed by the vehicle is clearly defined as shown 

in Figure 4c. 
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Not all segmented trajectory types can be detected by identifying trajectory points that appear to 

occupy the same space at the same time. A trajectory segmented into two different ones often have 

endpoints and start points that are sufficiently spaced in terms of time and distance to not trigger and space-

time conflict. An example of the aforementioned scenario is shown in Figure 5. As the figure shows, two 

sets of trajectory points (blue/red) are used to represent the position of the vehicle. The Type C trajectory 

scenario is often the result of a vehicle that comes to a stop and is then detected as a new vehicle when it 

starts moving again. 

 

 
Figure 2. Type B - Ghost Trajectory (Example 01) 

 

 
Figure 3. Type B - Ghost Trajectory (Example 02) 
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2.2.4 Type D: Static Trajectories 

A static vehicle trajectory error is a special type of error caused by the false detection of a vehicle by the 

radar-based vehicle detection system. One characteristic of this type of error is that trajectory points logged 

have a vehicle speed that is always zero, and as a result, there is no change in the position over time. Points 

associated with a Type D trajectory are often found along areas of the approach where vehicles stop, e.g., 

the stop bar or by driveways. From an analysis perspective, these errors are often the result of ghost 

trajectories (Type B) that are too far from the main trajectory to be detected by identifying space-time 

conflicts. These static trajectories could also result from pedestrian activity near the intersection or vehicles 

within a parking lot. 

 

 
Figure 4. Type C - Segmented Trajectory (Space-Time Conflict) 

2.2.5 Type E: Conflicting Approach Trajectories 

Conflicting approach trajectories refer to noise caused by a radar device temporarily reporting the presence 

of vehicles traveling on a conflicting approach. For example, a radar pointed towards the southbound 

approach often tracks vehicles exiting the westbound approach while traveling in front of the southbound 

approach stop bar. Points associated with a Type E trajectory are easily identifiable since the first and last 



12 

Y coordinate are downstream of the stop bar and the total distance traveled on the Y-axis is smaller than 

the distance traveled on the X-axis. 

 

 
Figure 5. Type C - Segmented Trajectory (No Space-Time Conflict) 

2.2.6 Filtering Trajectory Data Based on Scenario Type 

The typical dataset obtained for an intersection approach is visualized in Figure 6a. Therefore, a typical 

dataset such as the one shown in the figure requires the application of filters to remove trajectory points 

associated with the Type D and E trajectories discussed in Sections 2.2.4 and 2.2.5. Similarly, filtering 

techniques can be used to detect scenarios with Type A, B, and C pairs of trajectories. Once detected, 

trajectories part of the pairs can be removed, joined, or trimmed depending on the type of scenario. Steps 

outlined ahead describe the procedures that can be used to clean the trajectories dataset for an approach and 

prepare the dataset for further analysis. 

2.2.7 Step No. 1: Removal of Type E Trajectories 
Each vehicle trajectory is associated with a unique vehicle identifier. Therefore, for each identifier, the 

associated trajectory points can be sorted by timestamp, thus allowing the identification of the first and last 

Y coordinates reported for the vehicle. Type E trajectories can then be removed from the initial dataset if 

the first Y coordinate is lower than YT, a user-provided threshold selected to reflect a point along the 

centerline of the approach between the YB1 and YB2 asymptotes in Figure 7. In the case of Figure 6, the YT 

parameter is set to 95 feet, and it represents a position immediately upstream of the YB1 asymptote shown 

in Figure 7. YT can vary and does not necessarily have to match the YB1 asymptote and is key for the filtering 

and analysis process. Figure 6b shows an example of a dataset for which E trajectory points were removed 

using YT. 
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Figure 6.  Illustrated Removal of Type E Trajectories 

Typically, the number of Type E trajectories in a dataset is of significant magnitude when compared 

to the total number of trajectories obtained for an intersection approach. For example, in the “Wisconsin 

Avenue and North Meade Street” southbound approach, Type E trajectories represent approximately 48% 

of the trajectories reported by the radar. While the percentage mentioned is significantly dependent on 

traffic and varies by approach, it illustrates the importance of removing Type E trajectories. 

2.2.8 Step No. 2: Removal of Type D Trajectories 

As in the case of removing Type E trajectories, the first and last Y as well as the first and last X coordinate 

associated with each vehicle trajectory can be identified. Therefore, if no change in the vehicle position is 

detected during the analysis process, then that classifies the points as Type D trajectory. As such, the 

removal of the points from the dataset is warranted. Figure 8 shows the location of Type D trajectory points 

along the approach. On the southbound approach of the “Wisconsin Avenue and North Meade Intersection,” 

Type D trajectories represent approximately 4% of all trajectories reported by the radar. The reported 

percentage, while certainly not as significant as the percentage of Type E trajectories, does highlight the 

need for removal of the trajectories prior to analyzing the content of a dataset of vehicle trajectories. 
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Figure 7. Critical Points and Typical Intersection Schematics 

2.2.9 Step No. 3: Identifying Potentially Conflicting Trajectories 

Once Type D and E trajectories are removed, pair of trajectories that appear to violate the laws of physics 

(having a space-time conflict) need to be identified and classified into Type A, B, or C pairs. The 

identification of potentially conflicting trajectories requires information about each vehicle trajectory that 

goes beyond the known start points and endpoints of the trajectory.  A filter, based on the concept of space-

time conflicts, is used to identify conflicting pairs of trajectories. The filter detects two trajectories that 

appear to be trying to occupy the same space at the same time.  A key input value required for the 

aforementioned filter is the threshold distance (DT) used to determine if two trajectories are reported as 

occupying the same space at the same time. A DT value is required since the position reported by the radar 

device is that of the front vehicle bumper. 

DT is a user-defined value based on knowledge about the site and traffic conditions. For example, 

in the case of a standard sedan, if two trajectories are reported as being 6 feet apart, that would indicate a 

potential space-time conflict thus suggesting that in such a scenario a DT value equal to 6 feet is appropriate. 

The procedure is based on a moving time window that evaluates trajectory points at every unique timestamp 

record available in the trajectory dataset. 
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Figure 8. Illustration of Type D Trajectories to Remove 

The result of the conflict detection process described is a trajectory pairs dataset (CP) that appear 

to occupy the same point at the same time. For each pair of trajectories, a second filter determines if the 

scenario is one that reported a conflict due to incorrect tracking of a stopped vehicle by the radar. Errors 

due to incorrect tracking of a stopped vehicle is the most common cause of erroneous conflict detection. 

Under such a scenario, an erroneous conflict is detected because instead of tracking a vehicle that stopped 

and then started moving again via the same unique identifier, the radar assigns a new unique identifier to 

the same vehicle once it starts moving. At the same time, a “ghost” vehicle associated with the initial unique 

identifier is still reported for the last known stopped position. Therefore, when a properly tracked vehicle 

is detected as traveling over the “ghost” vehicle by the filtering procedure then an erroneous conflict is 

detected. 

Each pair of trajectories identified as conflicting after the application of the filtering procedures is 

analyzed to detect erroneous conflicts. The longest trajectory, measured in terms of distance traveled along 

the Y-axis, is identified and referred to as PL. The shortest trajectory is identified as PS. Stopped 

observations are then removed from each of the trajectories, thus resulting in a collection of points known 

as PLM and PSM. For each trajectory point in PLM, the corresponding point (based on the timestamp) in PSM 

is found and the distance between the points is computed. If all the distances computed for a pair of 

trajectories are greater than the specified DT value, the reported conflict is deemed erroneous. Figure 9 

shows examples of erroneous conflicts identified due to the application of the space-time violation filter. 

In the figure, trajectory points associated with stopped vehicles are shown in green. As shown, once green 

points are removed, the trajectories no longer overlap. 

For analysis purposes, once a pair of trajectory points is identified as representing an erroneous 

conflict, trajectories in the pair are removed from the CP dataset and no further filtering is applied. Once 

these pairs are removed, the remaining pairs of trajectories (CPR) is ready for analysis. Each pair of 
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trajectories included in the CPR dataset can be analyzed to determine if the scenario is composed of Type 

A, B, or C trajectories. In a pair of trajectories representing a Type B scenario, one of the trajectories is 

removed since the removed trajectories are considered noise. In Type A or Type C scenarios, trajectories 

are trimmed by removing points from the end or the start of trajectories to comply with laws of physics that 

prevent multiple vehicles from occupying the same space at the same time. Steps 4 - 6 describe procedures 

used to remove noise or to trim trajectories. 

 

 
Figure 9. Example of Erroneous Conflicts Identified 

2.2.10 Step No. 4: Removal of Noise Part of a Type B Trajectory Pair 

Each trajectory pair part of CPR can be analyzed to determine if the pair of trajectories represents a Type B 

scenario. In a Type B scenario, one of the trajectories is considered a ghost trajectory and therefore should 

be removed from the dataset. Determining if a trajectory pair represents a Type B scenario, requires the 

calculation of the values shown in Table 1. In the table, vehicle 1 represents the vehicle with the highest 

number of trajectory points with a speed value greater than zero. Using the values in Table 1, a pair of 

trajectories is considered Type B if any of the conditions listed ahead are satisfied in addition to the 

requirement that at least one of the trajectories in the pair crosses the stop bar.  

 

• RDY <= 0.25, UY1 > UY2, and LY2 > LY1, or 

• MD < DT, UY1 > UY2, and LY2 > LY1, or 

• RDY > 0.25, DXL < 12 feet, and DXS < 12 feet. 

 

Different colors (blue and red) indicate a different vehicle identifier in the dataset. 
Green indicates a stopped vehicle observation. 
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Examples of pairs of trajectories classified as Type B are shown in Figure 10. Once classified as 

Type B, the trajectory identified as vehicle 2 within the pairs is removed from the full dataset. If none of 

the conditions are satisfied, a pair of trajectories is not considered a Type B thus prompting further 

evaluations to determine if the scenario represented is a Type C or a Type A. 

Table 1. Values Computed to Evaluate if Trajectories Represents a Type B Scenario 

Trajectory Description and Details Notation 

Vehicle 1 Number of points with a speed value greater than zero MO1 

Vehicle 1 Change in X coordinate between first and last point DXL 

Vehicle 1 Distance traveled along the Y-axis DYL 

Vehicle 1 Maximum Y Coordinate UY1 

Vehicle 1 Minimum Y Coordinate LY1 

Vehicle 2 Number of points with a value speed greater than zero MO2 

Vehicle 2 Change in X coordinate between first and last point DXS 

Vehicle 2 Ratio of Vehicle 2 to Vehicle 1 moving points, i.e., MO2 / MO1 RDY 

Vehicle 2 Minimum distance between vehicle 2 and vehicle 1 trajectory points DM 

Vehicle 2 Average distance between vehicle 2 and vehicle 1 trajectory points MD 

Vehicle 2 Maximum Y Coordinate UY2 

Vehicle 2 Minimum Y Coordinate LY2 

 

2.2.11 Step No. 5: Identifying and Combining Type C Trajectory Pairs 

Pairs of trajectories in the CPR dataset not identified as representing a Type B scenario are analyzed to 

determine if the pair represents a Type C scenario. Figure 11 shows examples of pairs of trajectories 

identified as Type C. As shown in the figure, both trajectories appear to represent the path of a unique 

vehicle. The reason the two trajectories were marked for further analysis and included in the CPR dataset is 

because of an overlap between the trajectories triggered a space-time conflict during the conflict detection 

process.  
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Figure 10. Example of Type B Trajectories Identified for Removal 

If a pair of trajectories represents a Type C scenario, the two trajectories can be combined into one. 

If an overlap between the trajectories exists, combining the trajectories require trimming the end of the 

Vehicle 1 trajectory, as well as the start of the Vehicle 2 trajectory, could require trimming until no space-

time conflict exists in the dataset. If no overlap exists, both trajectories can then be combined into one 

without further manipulation. 

 

 
Figure 11. Example of Type C Trajectories Identified 

In order to identify if a pair of trajectories represents a Type C scenario, the values shown in Table 

2 are computed for each trajectory. In the table, vehicle 1 refers to the trajectory found as starting the furthest 

Different colors indicate a different vehicle id in the dataset 

Different colors indicate a different vehicle identifier in the dataset 
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upstream on the approach, while vehicle 2 refers to the trajectory found to end the furthest downstream. 

Therefore, the first step in determining if a pair of trajectories represents a Type C scenario is for the LY2 < 

LY1 and UY2 < UY1 conditions to be satisfied.  

Once the conditions are satisfied, the overlap between the trajectories is computed. PO2 and PO1 

values are divided by the maximum of the NO1 and NO2 values. The smallest value resulting from the 

division is considered the overlap value. If there is no overlap, the pair of trajectories is considered a Type 

C. Furthermore, if trajectories overlap, and the overlap value is less than 0.25 the pair of trajectories is also 

considered a Type C. Once identified as Type C, the pair of trajectories is joined into one in the dataset. 

Prior to joining, any point that results in the overlap of trajectories is removed. 

Table 2. Values Calculated to Identify, Trim, and Join Type C Scenario Trajectories 

Trajectory Description and Details Notation 

Vehicle 1 Number of points in trajectory with a speed greater than zero NO1 

Vehicle 1 First Y coordinate in the trajectory UY1 

Vehicle 1 Last Y coordinate in the trajectory LY1 

Vehicle 1 Number of points with a speed value > 0 and with a Y coordinate < UY2 PO1 

Vehicle 2 Number of points in trajectory with a speed greater than zero NO2 

Vehicle 2 First Y coordinate in the trajectory UY2 

Vehicle 2 Last Y coordinate in the trajectory LY2 

Vehicle 2 Number of points with a speed value > 0 and with a Y coordinate > LY1 PO2 
 

2.2.12 Step No. 6: Cleanup of Type A Pairs of Trajectories 

If a trajectory pair in CPR is not Type E, D, C, or B, the trajectory is treated as a possible Type A. Pairs of 

Type A trajectories appear to converge at some point in time while exhibiting the behavior of two different 

vehicles most of the time. To determine if convergence takes place upstream or downstream PDU and PDD 

values need to be calculated. PDU is the distance between trajectories upstream while PDD is the distance 

downstream. Both distance values are measured along the X-axis, i.e., the distance is measured 

perpendicularly along the Y-axis. If PDU < PDD trajectories are considered to converge upstream; otherwise, 

trajectories are considered to converge downstream. In addition to the convergence upstream or 

downstream, the RDY value (previously computed in Step 4) needs to be higher than 0.25 for a pair of 

trajectories to be considered Type A. 

Once a pair of trajectories meet the conditions, the pair can be treated as a Type A scenario. 

Trimming the end or start of the trajectories requires computing the Table 3 values. In the table, vehicle 1 

refers to the vehicle that appears to join the path, or diverge from the path, of vehicle 2. If the converge of 
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points is upstream, trajectory points with Y coordinates higher than MY1 are isolated for analysis. Points 

from the start of the trajectory are programmatically removed from the dataset until the change in MXU 

caused by the removal of the points is less than 0.5 feet. Similarly, if the converge of points is downstream, 

trajectory points with Y coordinates lower than MY1 are isolated for analysis. Points from the end of the 

trajectory are programmatically removed from the dataset until the change in MXD caused by the removal 

of the points is less than 0.5 feet. 

Table 3. Values Calculated to Identify and Trim Type A Scenario Trajectories 

Trajectory Description and Details Notation 

Vehicle 1 Average Y coordinate MY1 

Vehicle 1 Average X coordinate for trajectory points with a Y coordinate > MY1 MXU 

Vehicle 1 Average X coordinate for trajectory points with a Y coordinate < MY1 MXD 

  

After completion of Step 6, a clean and streamlined vehicle trajectories dataset (CVT) is available 

for analysis. If the cleaning procedures described in the previous sections are successful, CVT should result 

in a dataset that preserves actual vehicle trajectories associated with vehicles while eliminating noise. 

Section 2.3 assesses the accuracy of the CVT dataset produced after the application of the filtering procedures 

described in the previous sections. 

2.3 ACCURACY EVALUATION 

The number of vehicles reported by the radar as crossing a known point on the approach can be easily 

computed. Due to the nature of the dataset, the time at which the crossing takes places can also be computed 

using an interpolation process. Vehicle volumes by 5-minute intervals can be computed from the CVT 

dataset, and obtained after the application of the filtering techniques described in Section 2.2.6,  by using 

the timestamp of the crossing. 

2.3.1 Obtaining Ground Truth Volume 

Using video from the Wisconsin Avenue and Meade Street intersection in Appleton, WI ground truth 

volume counts were obtained. A total of 6 hours of video were processed to obtain ground truth volume. 

Due to the focus on comparing vehicle volumes, the timestamp associated with each vehicle recorded using 

the video was the time when the vehicle crossed the downstream edge of the crosswalk. Therefore, the 

timestamp recorded for each vehicle acts as a surrogate of the time when vehicles crossed the YT point. No 

movement classification by vehicle took place since the timestamp recorded for each vehicle was obtained 

prior to a point where the movement of each vehicle was clear. 
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2.3.2 Side-by-Side Volume Comparison 

Vehicle volumes obtained from the video were summarized in 5-minute intervals.  Ground truth volume 

for each 5-minute period was compared with the volume for the same period obtained by analyzing the CVT 

dataset using a YT value of 105 feet. For each interval in the dataset, the difference between vehicle volume 

from video and vehicle volume from an analysis of the CVT dataset were computed and prepared for 

analysis. After processing 6 hours of video, a total of 70 intervals were available for analysis. The reason 

for 70 intervals over a 6-hour video period instead of 72 is that two video recordings were used and for 

each video recording the first 5-minute interval was not included in the analysis due to the time offset 

between the video and the radar dataset which yields an incomplete ground truth dataset. 

A visual summary of the comparison of the vehicle volumes for each interval is shown in Figure 

12. In the figure, a histogram describing the volume differences observed over 70 intervals analyzed is 

shown. As suggested by the figure, filtering techniques described are capable of removing noise from the 

raw data reported by the radar while having a minimal impact on the number of vehicles reported as crossing 

a line defined by YT. In fact, for 72.8% of the intervals, the difference between reported volume extracted 

from the CVT dataset and that observed from ground truth volume observations is at most 1 vehicle. Across 

all 70 intervals, the average volume difference between intervals is -0.23 vehicles, and the average absolute 

difference is 1.05 vehicles.  

 

 
Figure 12. Error Analysis for Volume Obtained Using a YT value of 105 feet 
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As in the case of previous work, error values are reported in terms of vehicles instead of using a 

percentage. The argument for using vehicle numbers instead of percentage values is because reporting error 

as a percentage could be a misleading performance measure since a 1 vehicle difference for a low volume 

period is magnified while the difference is diminished on a higher volume interval. Given that the volume 

for the periods included in the analysis ranges from 12 to 46 vehicles with a median of 26 vehicles the 1.05 

vehicles average absolute difference over a 5-minute interval suggests the CVT accurately represents the 

actual conditions on the field. 

2.3.3 Sensitivity Analysis 

The error analysis presented in the previous section is based on a YT value equal to 105 feet. One of the 

most important functions of the YT parameter in the analysis process is the identification of Type E 

trajectories that need to be removed from the analysis. Selecting a YT value that is too high could lead to 

the misclassification of vehicles on the approach as Type E trajectories thus resulting undercounting. A YT 

value that is too low could result in overcounting of vehicles since vehicles from the conflicting approach 

that should be considered Type E trajectories are included in the CVT dataset instead of been removed. 

Figure 13 shows the average vehicle difference per 5-minute interval as a function of YT. 

 

 
Figure 13. Average Vehicle Volume Difference as Function of YT 

 As Figure 13 shows, the impact of YT values on the average difference is as expected with high-

end values resulting in undercounting and low-end values resulting in overcounting. In the figure, the 
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vertical lines shown at 100 feet and at 111 feet represent the position of the YB1 and YB2 asymptotes 

previously shown in Figure 7. Based on the behavior observed in the figure, the optimal value for YT 

represents a Y coordinate upstream of the YB1 asymptote but downstream of the YB2 asymptote. 

2.4 IMPLICATIONS FOR COMMERCIALIZATION 

The previous sections described filtering techniques that provide a research-level approach to noise removal 

and characterization. As a result of the noise removal procedures described and characterization effort, a 

detailed understanding of the type of noise expected in a vehicle trajectories dataset was obtained. From a 

commercialization perspective, there is one item described that will provide the greatest impact on noise 

removal and therefore improve the quality of the vehicle trajectory dataset that is used to obtain performance 

measures from the intersection such as vehicle volume. That item is the use of a horizontal asymptote, YT, 

to identify those vehicle trajectories that should be considered as valid for performance monitoring 

purposes. Based on feedback from the research team, the commercialization partner added an interface to 

their data collection device that makes it possible for the user to specify the location of the YT asymptote; 

thus, improving reliability and eliminating the complexities associated with the automated detection 

procedure used by the algorithm developed as part of the Type 1 IDEA project. 
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CHAPTER 3. ASSIGNING LANE INFORMATION TO VEHICLE TRAJECTORIES 
The dataset created after the application of the filtering procedures outlined in Chapter 2 is referred to as 

CVT and will be treated as containing an accurate representation of the traffic that uses the intersection 

approach. While accurate, one of the limitations of the CVT dataset is that no information about the lane 

used by vehicles is included. Certainly, the X coordinates of the vehicle trajectories can be used for lane 

assignments. However, such an approach will require the definition of fixed lane boundaries that could 

produce lane assignment errors when small shifts in vehicle paths occur due to common weather events. 

When traditional zone-based detection is used, obtaining detailed performance measures summarized by 

lane is a challenge due to the potential for false calls resulting from the definition of fixed boundaries. When 

a vehicle travels closer than expected to the edge of a lane, there is a risk for the activation of a zone in the 

adjacent lane which produces a false call. Therefore, at the very least, these false calls produce incorrect 

lane distributions which can negatively affect the quality of performance measures computations that rely 

on lane assignment values.  

The sections ahead outline the steps that can be followed to assign lane information to vehicle 

trajectories part of the CVT dataset. The sections ahead demonstrate that by analyzing trajectory data, 

accurate lane classification information can be assigned to all vehicles that exit an intersection approach 

without the need to define lane boundaries. The analysis procedures described overcome the limitations of 

existing lane classification procedures that rely on fixed boundaries since by relying on trajectory data false 

calls are virtually eliminated. A well know center-based clustering technique, known as k-means, is key to 

the analysis procedures. All procedures presented ahead were implemented using the R programming 

language; however, these procedures can also be implemented in other programming languages such as 

Javascript and Python. 

3.1 K-MEANS CLUSTERING 
Visual identification of lane centers from a trajectory data plot is a simple task. However, numerical 

procedures that automate the identification of the middle of a lane require the identification of clusters of 

trajectory points along the paths followed by thru-traveling vehicles. The selection of cluster locations needs 

to be done systematically and based on objective measurements. In the lane classification methodology 

presented in the sections ahead, cluster identification is achieved through the use of the k-means cluster 

analysis technique for which abundant documentation exists. Gan, Ma, and Wu highlight that the k-means 

method is partitional (or nonhierarchical) and is one of the most used clustering methods [4]. By design, 

the k-means method clusters numerical data around a center called the mean of the cluster or centroid. With 

the k-means method, each point in a dataset is assigned to a centroid that is the closest based on a distance 

function that, in the case of the CVT dataset, is based on a distance measured along the X-axis.  
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3.1.1 UNDERLYING THEORY AND AVAILABLE LIBRARIES 

Identifying the location of centroids within dataset requires the use of a search algorithm. For the lane 

classification scheme presented, the Hartigan and Wong algorithm is used [5] to find the centroids. The 

goal of the Hartigan and Wong algorithm is to divide the dataset provided, e.g., the x coordinates of thru-

traveling vehicles near the stop bar, into a number of clusters, K, in such a way that an objective function 

value is minimized [4]. The objective function for which the algorithm will find the optimal (lowest) value 

is shown in the equation ahead.  

𝑃𝑃(𝑊𝑊,𝑄𝑄) =  ��𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒�𝑥𝑥𝑖𝑖, 𝑞𝑞𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

 

In the equation shown, k is the number of clusters, n is the number of observations in the dataset, 

deuc(xi, qj) is a function that computes the Euclidean distance between a data point and the assigned centroid, 

and wij controls the impact that deuc will have on the calculation. Computational steps required to find cluster 

centroids and that minimize the objective function shown above can be implemented via the k-means 

method part of the stats library of the R programming language [6]. The library used allows the 

implementation of k-means in a fully automated approach as well as through a guided approach the controls 

the number of iterations and starting point for the identification of clusters. 

3.2 LANE CLASSIFICATION PROCEDURE AT STOP BAR 
Assigning a lane to vehicles in the CVT dataset identified as exiting the stop bar requires the identification 

of lanes that cross the YB1 asymptote on the approach. Once identified, the x coordinates of the vehicle 

positions immediately upstream of the stop bar are isolated for analysis. The x coordinates are used to 

identify the center of clusters representing the center of the paths followed by the vehicles. Lane values are 

then assigned to each vehicle based on proximity to the centers when crossing the stop bar. 

3.2.1 IDENTIFY LANE BOUNDARIES AT STOP BAR 

Each vehicle in the CVT dataset that crosses the YB1 asymptote is identified and referred to as VSB. Trajectory 

points immediately upstream of the stop bar for vehicles part of SBV are isolated for analysis if the points 

represent the position of the vehicle while moving. The subset of points is referred to as CXD. Only the 

position of vehicles while in motion is considered to avoid the inclusion of points in the analysis that skew 

the results towards the stopped position. Cluster centers for the X coordinates within the CXD dataset are 

then identified using the Hartigan and Wong algorithm implementation using the number of lanes at the 

stop bar as the input. Figure 14 shows a histogram of the x coordinate within CXD along with the cluster 

centers identified and displayed as red dashed lines. 
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Figure 14. Center of Clusters at Stop Bar 

3.2.2 ASSIGNING LANE IDENTIFIERS TO TRAJECTORY DATA 
For each vehicle part of VSB, the coordinate at the time of the stop bar crossing is identified. To identify the 

x coordinate at the time of the crossing the closest observations to the stop bar upstream and downstream 

are identified. Using the two observations, interpolation is used to determine x coordinate which represents 

the crossing location (XSB). The distance between the x coordinate of the stop bar crossing moment and the 

x coordinate of lane cluster centers is then computed for each vehicle. Based on the proximity to the cluster 

centers a lane assignment is made for each vehicle in the CVT dataset.  

Lane assignments are made based on what is the closest center to XSB value of each vehicle in the 

VSB dataset. Figure 15 shows a plot of all points associated with the vehicles in the VSB dataset. Trajectory 

points in the plot are color-coded by lane. In the figure, points associated with the position of a stopped 

vehicle are not included to make the data clearer. As the figure shows, lane assignment values appear to be 

accurate. An objective evaluation of the accuracy of the lane assignment process is discussed in Section 

3.4. 
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Figure 15. Trajectories Dataset for Vehicles that Cross the Stop Bar 

3.3 LANE CLASSIFICATION UPSTREAM OF STOP BAR 
For the purpose of determining vehicle movements, understanding the lane of the vehicle at the stop bar, or 

more precisely at the YT asymptote, is enough since the movement and lateral changes used to classify a 

vehicle as going through, right, or left happens downstream of the stop bar. However, if lane boundaries 

upstream of the stop bar are needed, then these boundaries can also be identified using k-means clusters. 

Once a VSB dataset with a departure lane assignment is available, the full trajectories of vehicles in the 

dataset are available for analysis. All trajectory points associated with the dataset can then be segmented 

by the Y coordinate value.  

Once segmented, the k-means clustering procedures are run for each segment of trajectories and 

the lane boundaries identified using identical procedures to those described in Section 3.2. Figure 16 shows 

a visualization of lane boundaries produced using the k-means clustering procedures to identify clusters 

and boundaries upstream of the stop bar. As the figure shows, the center of lanes and boundaries can be 

correctly identified using the k-means clustering procedures described. However, when running a cluster 

analysis, a key decision is what is the length of a segment along the Y-axis, i.e., how many iterations of the 

clustering detection procedures need to be performed. 

3.3.1 SELECTING THE LENGTH OF SEGMENTS FOR CLUSTER ANALYSIS 

Selecting the length, along the Y-axis, of segments upstream of the stop bar for which iterations of the 

cluster detection procedures need to be executed can be done by relying on the speed of the intersections 

approach. A good rule of thumb for selecting the length of the segment is to select a length equal to the 

distance traveled by a vehicle over a period of one second. For example, for an approach with a posted 
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speed equal to 35 MPH, a vehicle is expected to travel 51 feet over a period of 1 second. Therefore, for a 

35 MPH approach, a segment length of 50 feet can be used. The goal of selecting the distance traveled over 

a 1 second period for the length is that the frequency at which trajectory data is collected, 2 Hz, would result 

in at least one vehicle trajectory point falling within the length covered by the segment. 

 

 
Figure 16. Upstream Lane Boundaries Identified 

3.3.2 SELECTING TRAJECTORIES FOR IDENTIFYING LANE BOUNDARIES UPSTREAM 
In the case that the approach for which lane boundaries upstream of the stop bar need to be identified do 

not have the same number of arrival lane as departure lanes, a typical scenario when channelized lanes 

exist, the continuous lanes along the approach should be identified. Once the continuous lanes are identified, 

the VSB dataset can be queried for trajectories associated with these lanes and used for detecting clusters by 

segments. In fact, in Figure 16, only trajectory points associated with continuous lanes along the approach 

are shown and used to identify the cluster centers shown.  

Due to the multiple upstream-downstream lane configurations that are possible, the procedures for 

identifying lane boundaries upstream could require a mapping between upstream and downstream lanes. 

As a result, that makes the procedures better suited for user-controlled evaluations instead of fully 

automated and algorithm-driven evaluations. A user-controlled analysis process has the potential for better 

quality control that can be beneficial for the type of safety and operational evaluations that requires lane 

classification upstream of the stop bar. 
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3.4 ACCURACY OF LANE CLASSIFICATION PROCEDURE 
Understanding the accuracy of the lane classification process described in the previous sections requires 

comparing ground-truth lane classification observations with the corresponding observations obtained 

through the procedures described in the previous sections. The comparison procedures and results are 

presented ahead. As will be shown, results presented suggest that the lane classification procedures provide 

a high degree of classification accuracy. 

3.4.1 OBTAINING GROUND TRUTH VEHICLE VOLUME BY LANE 

A video-based manual count procedure was used to obtain vehicle counts classified by lane on the 

Southbound approach of the Wisconsin Avenue and North Meade Street. A screenshot of the approach is 

shown in Figure 17. In the figure, the rightmost lane (along the direction of travel), as well as the leftmost 

lane, are highlighted since those were the lanes for which volume data were collected. The timestamps 

when vehicles on Lane 1 and Lane 3 crossed the crosswalk were documented, and the volume per lane was 

summarized into 5-minute intervals. Vehicle volume data by lane for a total of 70 intervals were 

documented. An example of the summary sheet used to document the ground truth volume is also shown 

in Figure 17. 

 
Figure 17. Generating Comparison Dataset 

 Vehicle volumes by interval for Lane 2 were not documented in the ground truth dataset since the 

purpose of generating the dataset is understanding the accuracy of the classification process. Since the 

vehicle volume for an interval is fixed, errors associated with Lane 2 are correlated to errors in Lane 1 

and/or Lane 3 and could lead to misleading average error values by canceling the effect of pairs of volume 

differences. 
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3.4.2 ACCURACY OF K-MEANS LANE CLASSIFICATIONS  

For each of the 5-minute intervals for which ground truth vehicle volume was manually obtained the 

corresponding volume obtained by analyzing the VSB dataset was also obtained. A visualization of the 

volume values on both datasets is shown in Figure 18 using a scatter plot with a 1:1 reference line. The 

figure shows that across all volume magnitudes reported, ground truth and algorithm-based vehicle volume 

are generally in agreement. While a total of 70 pairs of observations are represented in the figure a lower 

number appears visible due to the pairs with the same values overlapping each other. 

 
Figure 18. Lane Volume from Algorithm and Lane Volume from Ground Truth Video 

 

Figure 19 shows a histogram visualization of the volume comparison shown in Figure 18. As the 

figure shows, results from the lane classification process presented are promising and highlight the quality 

of the results that is possible. As shown in the figure, volume differences in the comparison dataset for 91% 

of the 5-minute intervals considered in the analysis range between -1 and 1 vehicles. The average volume 

difference across intervals for the comparison dataset is -0.07 vehicles, while the absolute average 

difference is 0.40 vehicles. 

3.5 LIMITATIONS FOR TRAJECTORY DATASETS 
A challenge with the clustering procedures described in the previous sections is that no constraints are 

placed on the distance between clusters. Therefore, while unlikely, it is theoretically possible that in 

scenarios where the vehicle volume on one lane is significantly lower than the volume on another lane the 

k-means method could identify two clusters within the same lane. In other words, a possibility exists that 
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two cluster centers are reported as being physically closer than theoretically possible. Under such a scenario, 

three alternatives should be considered. First, increase the time covered by the dataset analyze to increase 

the vehicle volume included in the dataset analyzed. A second alternative is to select a set of starting centers 

that are spaced apart using a common lane width and reduce the number of iterations conducted by the 

algorithm to identify the cluster centers. A final, and third alternative, involves adding constraints to the 

clustering algorithm to prevent the identification of clusters that violate the expected lane widths. 

 

 
Figure 19. Histogram of Lane Classification Differences 

 

3.6 IMPLICATIONS FOR COMMERCIALIZATION 
The procedures described can be used to improve lane prediction when no information about lane 

boundaries is available during an analysis procedure. However, since a data collection system implemented 

by the commercialization partner provides lane boundaries by default, the techniques described in this 

chapter can be used when having to conduct a detailed research-level analysis of vehicle trajectory data 

during adverse weather events such as snowstorms. The reason for use during adverse weather events is 

that during these events, pre-defined lane boundaries are usually not followed and the classification 

procedures outlined in Appendix C, which rely on pre-defined boundaries, will not be sufficient. 
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CHAPTER 4. PLANS FOR IMPLEMENTATION 
In coordination with the commercialization partner, an improved version of the previously developed 

classification algorithm is expected to be available to customers as a software update after going through 

the corresponding licensing processes at the University of Wisconsin-Madison. The data collection device 

that can support the new version of the classification algorithm through a software upgrade is already 

available as a product. The commercialized device includes a new configuration interface to support the 

collection of the necessary data for running the improved classification algorithm and other performance 

measures that can be derived from vehicle trajectory datasets. The device, which can run data collection 

and analysis tools developed by the research team, allows for future expansion opportunities and the 

continued improvement of analysis procedures.  

Changes made to the device platform as a result of lessons learned during the project will enable 

commercialization of not only the existing research but future research. Some of the changes made to the 

device platform by the commercialization partner after considering feedback from the research team and 

their own experienced are presented ahead. Also presented is a description of some of the changes to the 

data collection, storage, analysis procedures, and recommended steps for the best implementation of the 

classification algorithm. The term platform is used to describe the software that makes commercializing the 

research possible. From the hardware perspective, everything described is made possible by relying on a 

Raspberry Pi computer that has additional storage. Figure 20 shows an example of a prototype of the data 

collection device installed inside a signal cabinet. 

 

 

Figure 20. Example of Prototype Installed at Signalized Intersection 
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4.1 CHANGE OF DATA STORAGE FORMAT 

In coordination with the commercialization partner, the research team evaluated the data collection and 

storage practices that were implemented in an early prototype of the data collection system. Early versions 

of the data collection system stored numbers associated with vehicle trajectories using a single (or double) 

precision number format. In other words, when a value such as 14.4 was stored up to 64-bits (8-bytes) of 

memory were used. This data storage procedure was certainly an architectural overlook likely driven by the 

inertia of default settings. When the type of data produced by the radar sensor was considered, as well as 

the type of analyses that used the data, it became obvious that storing trajectory data using 2 to 4-bytes 

integers through scaling made more technical sense. In other words, a change was made in the database and 

data collection procedures to store values such as 4.4 as 44 and then handle the conversion to the original 

value during the data analysis process. Figure 21 shows a screenshot of sample trajectory data collected 

using the new data storage format. 

 

 

Figure 21. Example of New Data Collection Format 

 The result of the aforementioned change, while simple in nature, makes it possible to store 

approximately one year of vehicle trajectory data on the local data collection device while minimizing the 

amount of “industrial-grade” storage that needs to be attached to the data collection system. This change in 

the storage format also made a previously planned cloud storage approach unnecessary thus 
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eliminating/reducing barriers for product adoption. Therefore, the final product that will be commercialized 

will not require any cloud connectivity but will still benefit from it by providing a web-based interface. 

4.2 CHANGE IN UNDERLYING OPERATING SYSTEM PLATFORM 

A previous version of the data collection and analysis platform relied on research-style software tools to 

implement the noise removal procedures and an early version of the classification algorithm. In the past, 

data collection was handled via Python scripts or a VB.Net program while data analysis and noise removal 

were handled using scripts written in the R programming language. These tools are powerful and remain 

valuable. In fact, the noise removal and lane classification procedures described in this report as 

improvements were developed and tested using these tools. However, deploying a commercial product that 

uses tools such as the R programming language requires a level of back-end technical complexity that was 

deemed unnecessary.  

Based on experience during testing and by considering the software requirements of the project, 

the commercialization partner changed the underlying operating system used to collect vehicle trajectory 

data. The operating system selected to support the data collection system is a Linux distribution geared 

towards embedded devices known as LEDE; at the time of the decision, LEDE was a “fork” of the popular 

OpenWRT distribution. One of the advantages of relying on the aforementioned Linux distribution was that 

it made it possible for the data collection system to have a web-based interface for configuration thus 

enabling a shift of the data analysis procedures to the client-side of the typical client-web-server 

relationship. Details of the architecture used in the final version of the prototype shown in Figure 20 are 

discussed in the sections ahead. 

4.2.1 Data Collection Interface 

The data collection system suffered several changes over the years and during this project that help in the 

process of commercialization. Beside one a key change, the one described in Section 4.1, additional changes 

to the data collection interface have been made. Changes to the data collection interface were made as a 

result of experience gained through additional data collection, deployments, and analysis iterations. In the 

past, the role of the data collection system was primarily focused on recording raw data that was then 

analyzed by scripts written in the R programming language. Now, the data collection system consists of 

two modules. The first module is a streamlined version that collects raw vehicle trajectory data, and the 

second provides vehicle summary information about a data collection period.  

On a nightly basis, when the data collection system shown in Figure 20 is deployed on the field, 

the data collection module summarizes vehicle trajectory and eliminates noise using a subset of the 

procedures described in Chapter 2. The summarizing procedure takes advantage of functionality added by 

the commercialization partner to the platform which allows the end-user of the system to specify the 
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position of the YT (effective start of the physical intersection) which is the key parameter during the noise 

removal process.  Once the device shown in Figure 20 is installed inside the signal cabinet, it can be 

configured over the web (if a network connection exists to the signal cabinet) or via WiFi. The wireless 

connectivity to the device is possible because the operating system selected to run on the hardware 

essentially converts the Raspberry Pi device into a router. Furthermore, an interface known as LuCI that 

runs on top of the operating system enables configuration of all data collection parameters using a web-

based interface like the one shown in Figure 22. 

 

 

Figure 22. Example of Remote Connection to Device 

4.2.2 Data Analysis Interface 

One of the advantages of the operating system selected as the supporting platform is that it makes it easy 

for the data collection system to also act as a web server. By acting as a web server, it enables the analysis 

procedures that produce performance measures such as volume metrics to be performed by a web browser 

instead of the software running directly on the device. Running the analysis procedures on the web browser 

is possible by writing the data analysis scripts using the JavaScript programming language and creating a 

web page that displays the results and makes it possible to select different analysis parameters. In 
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coordination with the commercialization partner, a data exchange format was created (along with the 

necessary software running in the data collection device) to expose vehicle summary data using JSON 

format thus simplifying the process of developing analysis scripts using JavaScript. Data exposed in JSON 

format includes information about the location of raw trajectory files, raw vehicle summary files, and 

geometric information about the intersection. 

Therefore, besides for the procedures that summarize vehicle trajectory data, no other analysis 

script is executed on the data collection device. When an end-user wants to access performance measures 

from an intersection, it will connect to the device via the WIFI network (or over a wired network), type the 

IP address of the data collection device on a web browser and select the time period, and approach, from 

which performance measures are desired. The web page that will be displayed to the user will then execute 

JavaScript code on the user browser that will query vehicle summary information exposed on the data 

collection format using JSON and generate/visualize performance measures. The analysis and visualization 

capabilities are enabled by the D3.js and C3.js libraries. The visualizations enabled by the platform are 

vector-based, thus making them viewable at different resolutions; the visualizations are also dynamic, thus 

allowing the user to hide individual aspects. An example of the type of visualization possible by using the 

C3.js framework and the type of data exposed by the data collection system is shown in Figure 23. 

 

 

Figure 23. Example of Visualization Possible with the C3.js Framework 
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Based on feedback received during the project, functionality was also added to download the data 

associated with the visualizations as well as the underlying raw trajectory data. Access to raw trajectory 

data over the network makes it possible to expand the capabilities of the system and to develop meta-

analysis techniques that look at network-wide data and create visualizations. Expanding the capabilities of 

the system to enable network-wide analyses will open the doors to monitoring procedures that today require 

advanced signal controller infrastructure and high-resolution data collection capabilities. 

4.3  RECOMMENDED IMPLEMENTATION APPROACH 

Based on the results of the analysis procedures described in Chapters 2 and 3, by considering the analysis 

procedures developed in the Type 1 research effort, and by considering feedback during the additional data 

collection conducted for this project the sections ahead describe recommendations that will help the 

commercialization partner take a final product to market. Most of these recommendations have been already 

implemented and are available to test customers as part of the data collection system created by the 

commercialization partner; others, specifically those related to trajectory classification, should be 

implemented prior to making a final product available to customers. Recommendations are grouped into 

two categories: infrastructure and configuration, as well as software implementation. The sections ahead 

describe the recommendations made for each category. 

4.3.1 Infrastructure and Configuration 

The research team has had the opportunity to collect trajectory data over many years and to review different 

versions of trajectory datasets, including merged trajectory and video datasets (see Appendix A). Based on 

the experience gained, the following are key things that should be considered from the perspective of how 

to configure the radar device for optimal data collection. 

• Position the radar in such a way that the line of sight is as close to the centerline of the monitored 

approach as possible. By doing this, filtering procedures that rely on vehicles crossing the YT 

asymptote to be considered valid will work better. 

• Configure the radar in such a way that vehicles are not “dropped” until an entire cycle has been 

completed. For example, if the signal cycle is 120 seconds, the device should not be configured to 

drop a vehicle from tracking if it “lost” the vehicle until 120 seconds have elapsed. 

• Select a value of the YT asymptote that is as close to the physical area of the intersection as possible. 

This will make it possible to reduce the number of vehicles that are not counted by the radar during 

high volume periods since the vehicle is dropped upstream of YT and is only picked up again 

downstream of YT. See Appendix B for an example of the scenario described. 
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4.3.2 Software Implementation 

When implementing a version of the trajectory classification algorithm, the following are the 

recommendations made to the commercialization partner. The recommendations are based on an analysis 

of vehicle trajectory data, intersection video, and research results described in this report. 

• Make changes to the data collection and summary procedures to implement the filtering techniques 

described in Chapter 2. Implement the changes in the data collection module written in the Python 

programming language and focus on implementing the procedures associated with the removal of 

trajectories that do not cross the horizontal asymptote (YT). 

• Expand the trajectory summary procedures to include additional information about each trajectory 

such as the change in horizontal position downstream of the YT as well as time at which the YT is 

crossed. 

• Expose lane information to analysis scripts that execute client-side. This change will eliminate the 

need to add statistical methods such as the k-means clustering technique described in Chapter 3 and 

will simplify the implementation of the classification algorithm. 

• Implement a modified version of classification procedures developed in the Type 1 project to 

determine the movement associated with a trajectory. Technical details of the recommended 

version of the algorithm are described in Appendix C. 

• Expose raw vehicle trajectory data to client-side scripts to facilitate future expansion, support 

research tasks, and prevent users from being “locked” into an analysis interface. 
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CHAPTER 5. CONCLUSIONS 
This report documented procedures that can be used to improve the quality of results produced by an 

algorithm that can classify vehicle trajectories into movements based on data characteristics downstream 

of the stop bar of an intersection approach. After a review of the results and limitations of the previous 

work, a decision was made that the most beneficial approach to improving the quality of results of the 

previously developed algorithm was to improve the quality of the data used as input. This required the 

development of a new filtering procedure focused on eliminating noise in vehicle trajectory datasets 

obtained from a radar-based vehicle detection system as well as the identification of techniques that can be 

used to classify vehicles into lanes if lane configuration is not available as input for the data analysis 

procedures.  

Details of the filtering techniques and lane classification procedures developed, along with the 

results, are described in Chapters 2 and 3. Based on advice from the research team as well as their own 

experience, the commercialization partner created a data collection device that can be deployed at signalized 

intersections. Early versions of the device were tested in cities across 3 states (Ames, IA; Appleton, WI; 

and, Bloomington, IL). An initial version of the device (focused on volume data collection and 

supplemental performance measures such as speed) was released as a product in the Summer of 2019. The 

released device  implements several recommendations from the research team such as the ones described 

in sections 4.3.1 and 4.3.2 thus making it possible to push a streamlined version of the classification 

algorithm (see Appendix C for streamlined classification rules) as a software update to the device. In 

addition to multiple test deployments at cities, an iteration of the device has been commercialized as a 

research tool and purchased by the University of Massachusetts – Amherst and by the University of 

Louisville.  

5.1 ACCURACY AND PERFORMANCE OF NEW PROCEDURES 

Performance of the currently deployed data collection procedures, measured in terms of vehicle volume 

accuracy, is comparable to the performance of the classification procedures developed as part of the Type 

1 project; however, accuracy values achievable by the new procedures are more reliable. The higher level 

of reliability in the performance of the filtering procedures presented (and thus the streamlined classification 

procedure described in Appendix C) is due to the resulting trajectory datasets more accurately representing 

the reality of the combined vehicle volume at an intersection. Previous filtering techniques were not able to 

eliminate noise at the same level as the techniques described in this report due to a lack of understanding 

of the type of noise generated; therefore, a comparison of accuracy values alone does not offer the same 

level of reliability because the noise in the data could have impacted the values. For example, a ghost 

trajectory such as the ones described in Chapter 2 could have a misleading but positive impact on accuracy 



40 

calculations by “offsetting” a vehicle trajectory missed by the detection system. This type of scenario 

explains the focus of the research team on eliminating noise and more accurately representing the vehicle 

volume on an intersection approach as a key step to improving results produced by the classification 

algorithm developed in the Type 1 project and of which a streamlined version is described in Appendix C. 

5.2 DIFFERENCE BETWEEN COMMERCIALIZATION AND RESEARCH VERSIONS 

Data analysis procedures presented were implemented using research tools and are meant to provide the 

highest level of accuracy possible. The research team recognizes that not all analysis procedures described 

will be implemented in the product that will be commercialized by the commercialization partner. 

Commercialization of an analysis procedure must meet thresholds that include the ability to support the 

procedures in the future from a technical and customer support point of view. The commercialization 

decision also includes an exercise that must balance the complexity of an analysis procedure against the 

benefits obtained. For example, based on the results of the research, changes were made to the data summary 

procedures to rely on the position of the YT asymptote. These changes were implemented in the upcoming 

commercial version because it can generate a vehicle trajectory dataset that can be used as input for 

monitoring multiple performance measures, including the generation of turning movement count data.  

 The research described also demonstrated that vehicle trajectory data can be classified into lanes 

without the need to define lane boundaries. This approach, which relies on clustering techniques can be 

useful for research applications and was initially considered as the next step in improving the classification 

algorithm, but the complexities and supporting such an automated procedure outweigh the commercial 

benefits. However, since the addition of lane information can improve the trajectory classification process 

by eliminating some of the automated filtering techniques developed as part of the Type 1 project, changes 

to the configuration interface were made to allow entering lane boundaries. These lane boundaries entered 

by the user make it possible to streamline the procedures developed as part of the Type 1 project while still 

maintaining the same underlying classification procedures based primarily on the X coordinate change 

downstream of the YT asymptote. 

5.3 FUTURE RESEARCH AND APPLICATION OPPORTUNITIES 

The type of trajectory data obtained from the data collection system, which is cleaned using the noise 

removal procedures described in Chapter 2, and that can be supplemented by the lane classification 

procedures described in Chapter 3, can be used to gain insights about the performance of an intersection 

that are not possible with traditional monitoring techniques. For example, safety-related performance 

measures such as time-to-collision between vehicles could be obtained by analyzing the speed and position 

of vehicles while using the intersection approach and using their speed and distance to calculate the time-

to-collision safety performance measure. Vehicle trajectories from multiple approaches can be analyzed 
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together to have a better understanding of how left turn and thru vehicles interact during permissive phases; 

something that would be possible since using the trajectories from individual approach, the time when 

vehicles arrived at a common conflict point can be identified and used in the calculations. 

 Furthermore, previous research [7] has demonstrated the feasibility of monitoring red light running 

from radar-based vehicle trajectories thus opening the doors to using the data collection system not only 

for volume monitoring but also for quantifying the number of red-light runners per intersection, a proactive 

safety monitoring technique. As a research tool, techniques and classification procedures open the door to 

understanding detailed vehicle interactions between vehicles and vulnerable road users such as pedestrians 

by allowing researchers to monitor the change in the speed of vehicles as they approach a conflict point. 
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APPENDIX A: TOOLS TO SUPPORT ANALYSIS AND RECOMMENDATIONS 

Across the report, statements are made indicating that recommendations made take into account the 

experience of the research team with collecting vehicle trajectory data. The experience includes fieldwork 

as well as time spent analyzing video and matching the video to vehicle trajectory datasets. Matching video 

to trajectory datasets is a time-consuming process but invaluable as it provides qualitative insights into a 

dataset based on quantitative data. A software tool written in MATLAB was created to combine video with 

vehicle trajectory data and to simplify the trajectory-matching process. Figure 24 ahead shows a screenshot 

of the two aforementioned datasets merged into one. On the left side of the figure video from the intersection 

is shown, while on the right side, vehicle trajectory data points for the corresponding time on the video are 

also displayed along with the corresponding vehicle identifiers. In addition to quantitative data, this type of 

merged datasets is what allows the research team to make observations about the impact of settings on the 

device on the quality of the trajectory data available for analysis. 

 

 

Figure 24. Results of Merging Vehicle Trajectory Data and Video 

 

Using the datasets merging tool, the research team was able to visually confirm the moment that 

vehicles cross the YT asymptote used to filter trajectory data and eliminate noise. The tool also makes it 

possible to take a look at points in time when mishaps in the data collection process happen and to better 

understand those failures. Examples of these mishaps include vehicles prematurely dropped by the radar 



44 

sensors, instances of sensor confusion, and instances of ghost trajectories among others. The merge tool 

also provides a simple interface to validate results and to match vehicles in the video with the corresponding 

vehicle identifier in the trajectories dataset. For example, in addition to the scenario shown in Figure 24, 

the scenario shown in Figure 25 demonstrates the use of the dataset merging tool to observe additional 

information about a vehicle such as the maximum speed observed by the radar sensor. 

 

 

Figure 25. Example of Additional Information for Vehicle 
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APPENDIX B: SUPPLEMENTAL VISUALIZATIONS 

Figure 26 ahead shows an expanded version of the typical trajectory dataset used throughout the research 

and mentioned in the report. The dataset is for the northbound approach of the Meade and Northland 

intersection in Appleton, WI. The red line shown in the dataset represents all the data available for a specific 

vehicle identifier and demonstrates the importance of using a YT value as low as possible. For example, if 

the asymptote represented by the upper dashed line was used to filter valid vehicles, then the trajectory 

shown in red would not have been considered a valid observation while the use of the lower dashed line, 

on the other hand, would have included the vehicle as a valid observation. 

 

Figure 26. Expanded Visualization of Approach Trajectory Data 
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APPENDIX C: TECHNICAL NOTES ON IMPROVED CLASSIFICATION ALGORITHM 

The technical details of the streamlined version of the classification algorithm mentioned throughout the 

report are described ahead. The algorithm relies on data generated by following the filtering procedures 

described in this report, which can be obtained from the datasets generated by the data collection system 

commercialized by the commercialization partner. The algorithm also relies on lane information assigned 

by taking into accounts lane boundaries that can be defined in the data collection system commercialized 

by the commercialization partner. 

 

Input Data 

Data used by the classification algorithm are those vehicles that after undergoing the filtering procedures 

described have been found to cross the Y Cutoff point shown in Figure 27 between the xMin and xMax 

locations identified in the same figure. As previously discussed, the Y Cutoff point is a horizontal asymptote 

located between the approach stop bar and the edge of the intersection conflict area. Each vehicle trajectory 

found to satisfy the described conditions is assigned a lane based on the X Coordinate at the Y Cutoff point 

(XYT). Furthermore, for each vehicle trajectory, the final X coordinate (XF) is known as well as the total 

change in X coordinate downstream of Y Cutoff (DX) and the total change in Y coordinate downstream of 

Y Cutoff (DY). 

 

Figure 27. Supporting Figure for Parameter Description 

Classification Procedure 

Based on the information available for each trajectory, the rules listed ahead can be implemented to assign 

a movement for each vehicle trajectory part of a trajectory dataset. Once a movement is assigned to a 

trajectory, no other rules are applied to a trajectory. The rules are applied in the order presented. For 
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implementation purposes, XT1 represents the leftmost boundary of the lanes on which thru movements are 

permitted while XT2 represents the rightmost boundary. Also, X1 and X2 represent the leftmost and rightmost 

boundaries of all lanes on the approach used by vehicles. The number of lanes that allow thru movements 

is referred to as NT. An assumption is made that right, thru, and left movements are possible. 

 

Rule: XF < X1. 

Decision: Classify trajectory as a right turn. 

 

Rule: XF > X2. 

Decision: Classify trajectory as a left turn. 

 

Rule: XF ≥ X1 and X1 ≤ X2. 

Decision: Classify trajectory as thru. 

 

Rule: XF < XT1 and DY < DX. 

Decision: Classify trajectory as a right turn. 

 

Rule: XF < XT1 and DX < (X1 – X2) / 2*NT     [Only test if vehicle on lane that allows right turns] 

Decision: Classify trajectory as right turn. 

 

Rule: XF > XT2 and DX > (X2 – X1) / 2*NT     [Only test if vehicle on lane that allows right turns] 

Decision: Classify trajectory as right turn. 

 

Rule: DY > DX    [Only test if the vehicle is on a lane that allows thru movements] 

Decision: Classify trajectory as thru. 

 

Rule: XF > XT1    [Only test if the vehicle is on a lane that allows right turns] 

Decision: Classify trajectory as thru. 

 

Rule: XF < XT2    [Only test if the vehicle is on a lane that allows left turns] 

Decision: Classify trajectory as thru. 

 

Rule: All remaining vehicle trajectories 

Decision: Assign the movement based on the most common movement on the lane. 
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Performance Evaluation 

The performance of the streamlined version of the algorithm was evaluated on a dataset similar to that used 

for the Type 1 project from the Wisconsin Ave and North Meade Street intersection in Appleton, WI. 

Ground truth 15-minute volume by vehicle movement was compared with the equivalent volume reported 

by the algorithm. A total of 108 intervals were analyzed. In the analysis dataset, each analysis interval was 

associated with a unique vehicle movement and 15-minute time period. The result of the comparison is 

shown in Figure 28. As the results show, in 64.8% of the intervals, the difference between the ground truth 

volume and the volume reported by the algorithm had a ±2 vehicles accuracy. 

 

Figure 28. Side by Side Comparison of Ground Truth Volume and Algorithm Results 

 

 Further analysis of the algorithm performance reveals that on average the difference between 

volume reported by the algorithm and the ground truth volume is -0.53 vehicles, an average absolute error 

of 2.25 vehicles, and an average absolute error (expressed as a percentage) is equal to 9.48%. These 

performance results are similar to those obtained in the previous version of the algorithm and were obtained 

with simpler procedures made possible by improved filtering techniques and which can be commercialized 

without having to rely on complex scientific software tools. 
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