

The Future of Smart Mobility

October 2019

Drive Ohio

Patrick Smith

DriveOhio Interim Executive Director

Drive Ohio

The Future of Smart Mobility

Drive **Ohio**

The Future of Smart Mobility

2019 Statewide Projects

US 33 SMART MOBILITY CORRIDOR

Partners

Future Vision

Partnership for Transportation Innovation & Opportunity

DRIVING #OURFVFUTURE: OHIO

A Discussion on Automated Vehicles and the Future Workforce

#STEMDrivesOhio

OSLN DESIGN CHALLENGE 2019/2020

designchallenge.osln.org

"IT'S LIKE BEING BORN ON AN ISLAND WITHOUT BRIDGES OR BOATS AND EVERYTHING YOU NEED IS ACROSS THE WATER."

The Future of Smart Mobility

ODOT Statewide Framework for Connected and Autonomous Vehicle (AV/CV) Deployments

Goal: Create Statewide Framework

- This Framework is first of its kind in U.S.
- DriveOhio's first initiative: Coordinate statewide CV/AV technology deployments

Framework Outcome: Guidebook

Completed or underway: tools needed to **plan**, **deploy** and **monitor** AV/CV projects that will work together

Stakeholder Engagement

Vehicle crashes

at intersections

Lack of traffic data

incident/weather/

Congestion on

Congestion on arterial roadways

maintenance

collection capability

Provision of real time travel

information (congestion/

freeways/expressways

Congestion caused by

roadway construction/

Roadway crashes due to weather conditions

Rear-end collisions due to

traffic backup/queues

Crashes in and around roadway work zones

construction) to the public

Lack of real-time traffic

monitoring capability

Conflicts and safety

pedestrians/cyclists

and transit vehicles

Conflicts and safety

Conflicts and safety

pedestrians/cyclists

and non-transit vehicles

incidents between

Transit on-time performance

incidents between transit vehicles and other vehicles

incidents between

Identified Top Challenges that May Be Addressed by Technology

Determined Top, Statewide User Needs

Ped/bike safety at/near intersections or along roadway

Staffing skills, knowledge and resources to support technology

3

Feasibility Exploration

Identified Readiness Status of AV/CV Applications

- Assessed applications being used across U.S.
- Identified ready-, near-ready and future deployment applications

Application	Deployment Ready	Deployment Near Ready	Further Development Required
Emergency Electronic Brake Light	•		
Forward Collision Warning	•		
Do Not Pass Warning	•		
Intersection Movement Assist	•		
Vehicle Turning Right in Front of a Transit Vehicle	•		
Blind Spot Warning + Lane Change Warning		•	
Left Turn Assist (LTA)			•

Concept of Operations

Developed Concept of Operations

- Described target system and desired operation
- Includes applications, core systems and infrastructure

Identified 109 CV/AV Applications to Include in the Ohio Framework

Application	Need-Based	Project-Based	Future Projects
Curve Speed Warning	•		
End of Ramp Deceleration Warning (ERDW)	•		
Reduced Speed Zone Warning/Lane Closure		•	
Pedestrian in Signalized Crosswalk Warning	•		
Red Light Violation Warning	•		
SPaT MAP Display Signal Timing, Time to Green	•	•	
Wrong Way Entry (WWE)	•		
Speed Limit Warning			•
Spot Weather Impact Warning	•	•	
Restricted Lane Warnings			•
Oversize Vehicle Warning			•
Stop Sign Violation Warning	•	•	
Stop Sign Gap Assist	•	•	

Pedestrian in Signalized Crosswalk Warning

Convened Concept of Operations Workshop

Discussed 8 operational scenarios:

- Traffic signal operation
- Rail crossing issues
- Unplanned incidents
- Work zones
- Trucker parking information
- Mobility support
- Disruption to mobility ecosystem
- Safety across transportation modes

System Requirements Utilization Process

Living doc to be updated as apps develop and deploy!

Design Drawings

Prepared Standard Drawings

- Dedicated Short Range Communications
- Closed Circuit TV Assembly
- Vehicle Detector
- Highway Advisory Radio and Beacon Sign
- Dynamic Message Sign
- Destination Dynamic Message Sign
- Ramp Meter

CV/AV Project Deployment Process

Update statewide docs & drawings to assist future users

The Guidebook is Meant to be Used

- Use tools as a resource for planning and deploying of future projects
- Contribute updates that may assist future uses

PLANNING FOR CAVS

Long Range Transportation Plan

AO45 SCENARIO PLANNING

- Long Range Transportation Plan needed to consider CAV and emerging tech impacts
- Needed resilient strategy and policy recommendations
- Used scenario planning approach

AO45 SCENARIO PLANNING

 Both Innovation and Ohio Renaissance Alternatives included significant CAV penetration

Changes to Analysis Inputs

Assumed a future driven by technology and innovation

(including impacts on demographics, economy, workforce, quality of life)

Adjusted Statewide Travel Demand Model estimates

(50% increase in capacity on major roads, 15% increase in travel speeds)

Impacts on Strategic Outputs

Lower highway capacity needs anticipated

Fewer congested roadways anticipated

More demands for technologysupported multimodal travel

Strategies to leverage technology and data to improve transportation safety, efficiency and reliability

AO45 SCENARIO PLANNING

 $\circ~$ Anticipated future needs vary across future alternatives, driven by CAV and other tech

Αссє

Travel Demand Modeling

Title or Event Name (go to Insert > Headers & Footers to change)

CAVS IN THE TRAVEL DEMAND MODEL 2 DESIGN MODIFICATIONS

$\circ~$ How People View Travel

- Cars become available at any location at any time
- In-Vehicle Time Productivity in Mode Choice AVs allow "drivers" to use travel time productively (working, reading, texting, ...)
- $_{\odot}$ $\,$ HH AVs are convenient for transit access

How Vehicles are Used

- Older adults, youth, disabled and others without a driver's license will have access to AVs (can make independent car trips)
- Empty repositioning trips made by AVs to accommodate other HH members' travel
- Availability of cheap, driverless taxi/TNC

CAVS IN THE TRAVEL DEMAND MODEL UPDATED MODEL CONSTRAINTS & EXAMPLE

- Market Penetration
 Rates
- Age for traveling alone
- Productivity time bonus
- Capacity and Speed bonuses by penetration rate and facility type
- Transit accessibility
- CAVs for HH
- CAVs for taxi

Scenarios

	1	2	
Parameters	Low productivity bonus,	High productivity bonus, high	
	high roadway capacity	roadway capacity	
	improvement	improvement	
	Analyze sensitivity to	Analyze sensitivity to	
Objective of scenario	productivity bonus	productivity bonus	
AVs proportion in market	100%	100%	
Auto in-vehicle time	250/	50%	
productivity bonus for AV	23%		
"No escort" promotion for	-	5	
AV households	5		
Minimum age for traveling	40	40	
alone in AV	10 years	10 years	
K _R NR promotion factor	3	3	
Roadway capacity	Interstate: 80%	Interstate: 80%	
improvement	Arterial: 60%	Arterial: 60%	
Vehicle spacing reduction	20%	30%	
due to single AV	50%		
Zonal parking cost	No change	No change	

CAVS IN THE TRAVEL DEMAND MODEL EXAMPLE

Impact on Accessibility: Scenario 1 and 2

Percent Change in Accessibility to Non-Mandatory by Auto

PROJECT LEVEL TRAFFIC MICROSIMULATION GOALS

- Determine how effective different CV/AV applications are in reducing traffic congestion and improving safety, traffic speeds, capacities and reliability
- Determine which locations and traffic conditions are most amenable to these applications
- Synthesis noted uncertainties with:
 - CAV Penetration Rates
 - \circ Impacts of CAV Technologies
 - $_{\odot}$ $\,$ How the public perceives and experiences travel

QUESTIONS

PATRICK SMITH INTERIM EXECUTIVE DIRECTOR DRIVEOHIO pat.smith@drive.ohio.gov

NICK HEGEMIER

MANAGING DIRECTOR INFRASTRUCTURE nick.hegemier@drive.ohio.gov

SCOTT PHINNEY ADMINISTRATOR OFFICE OF STATEWIDE PLANNING & RESEARCH scott.phinney@dot.ohio.gov

@driveohio @driveohiotech @odot_statewide

