Transportation Systems Management & Operations Traffic Infrastructure Process (TSMO-TIP)

Implementation Webinar

Bureau of Traffic Operations March 16, 2016, 1:00pm-3:00pm Mark Lloyd | 414-224-1947

Outline

- 1. Welcome and Introductions (5 min)
- 2. TSMO-TIP Background (15 min)
- 3. Process Overview (10 min)
 - Flowchart
 - Tools
- 4. Walking through the Process (60 min)
- 5. Next Steps (10 min)
- 6. Discussion and Questions (20 min)

Please type questions in the chat box throughout the webinar

1. Introductions

TSMO-TIP Contacts

Mark Lloyd, PE

WisDOT Bureau of Traffic Operations ITS Planning Engineer Mark.Lloyd@dot.wi.gov | 414-224-1947

David Karnes, PE

WisDOT Bureau of Traffic Operations
Traffic Systems Supervisor
David.Karnes@dot.wi.gov | 414-220-6804

Presenters

Mark Lloyd | WisDOT Bureau of Traffic Operations

TSMO-TIP Project Introduction

Peter Rafferty | UW-Madison TOPS Lab

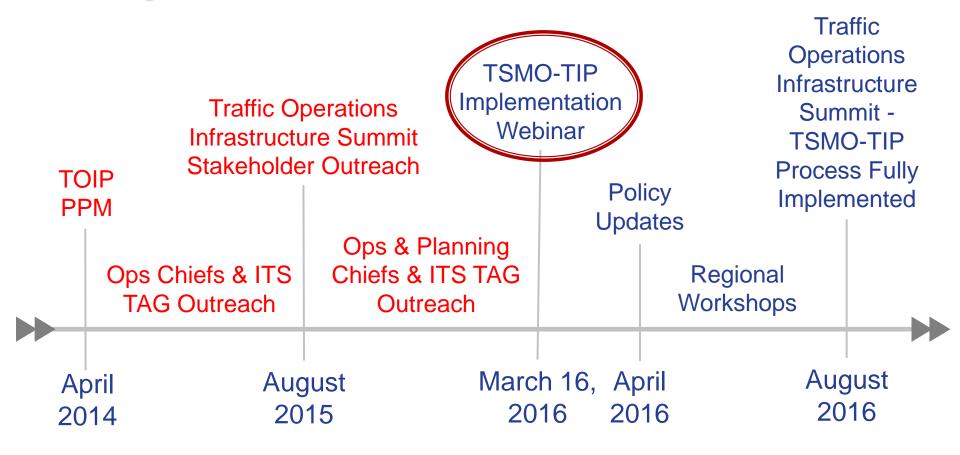
TSMO-TIP Historical Information

Jon Riehl | UW-Madison TOPS Lab

TSMO-TIP Technical Information and Needs Analysis Tool

Natalie Mengelkoch | Kimley-Horn

TSMO-TIP Benefits Tool



Webinar Objectives

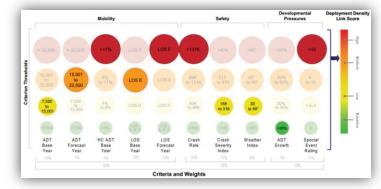
- Explain the TSMO-TIP Process
- Describe how the process will help WisDOT and your region deploy TSM&O infrastructure in a more efficient and documented way
- Gain regional buy in or identify items of SIGNIFICANT concern
- Share process implementation schedule

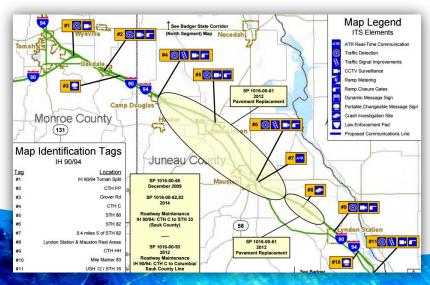
Implementation Timeline

Stakeholder Outreach

TSMO-TIP Implementation

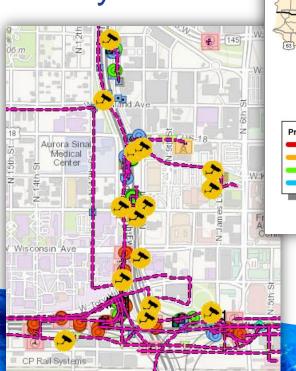
- Projects not yet approved will go through this process to justify and document deployments
 - BTO will assist regions with FY17 Standalone major ITS projects
 - Multi-year projects already approved are unaffected
- New projects going forward must go through this process

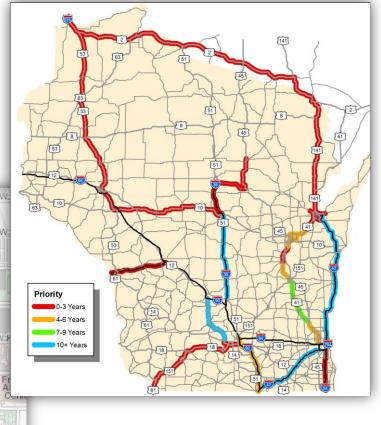



2. TSMO-TIP Background

History

- ▶ ITS Deployments in Wisconsin
- Traffic Operations Infrastructure Plan (TOIP)
 - Implementation Plan
 - Communications Systems Layer
 - Bi-Annual Updates
- TOIP Project/Program Management (PPM)


TOIP Current Deployment Status


Roughly 90-95% deployed

Mature Network

Toward an Annual Cycle

StandaloneProgram

Key TOIP Project / Program Management (PPM) Outcomes

- Develop draft methodology and associated tools
 - Potential operational improvements
 - New technologies
 - Improved GIS analysis, planning, and prioritization
- Focus on ITS deployments
- Inclusive stakeholders, with regular review
- The PPM drove the change to TSMO-TIP
- Program status defined in the State of the State report
- Implementation of the TSMO-TIP, will close the PPM

Defining TSM&O – MAP-21

- Not just ITS
- MAP-21 revised federal definition of TSM&O (23 U.S.C. § 101(a)(30))
 - Integrated strategies to optimize existing infrastructure performance
 - Multimodal and intermodal, cross-jurisdictional systems, services, and projects
 - Preserve capacity and improve security, safety, and reliability of transportation system
 - Includes coordinated regional implementation and interoperability
- WisDOT TSM&O State of the State Report adopts MAP-21 definition adding:
 - "Plans to retire system components that no longer provide sufficient benefit to warrant continuation or are technologically obsolete."

Example TSM&O Traffic Infrastructure Strategies

- Work Zone Management
- Traffic Incident Management
- Service Patrols
- Special Event Management
- Road Weather Management
- Transit Management

- Traffic Signal Coordination
- Surveillance and Monitoring
- Traveler Information
- Ramp Management
- Managed Lanes
- Active Traffic Management
- Integrated Corridor Management
- Truck Parking

TSM&O Stakeholders

- Division of Transportation System Development (DTSD)
 - Bureau of Traffic Operations (BTO)
 - Traffic Systems & Management Section
 - Traffic Engineering & Safety Section
 - Bureau of Highway Maintenance (BHM)
 - Regional operations managers
 - Regional traffic & planning staff
 - Bureau of Project Development (BPD)
- Division of Transportation Investment Management (DTIM)
 - Bureau of State Highway Programs (BSHP)
 - Bureau of Planning and Economic Development (BPED)

- Wisconsin State Patrol (WSP)
- Wisconsin TOPS Lab
- Federal Highway Administration (FHWA)
- Counties
 - Milwaukee and Dane County Sheriffs
- Municipalities
 - City of Milwaukee
 - City of Madison Traffic
- Planning Organizations
 - Southeast Wisconsin Regional Planning Commission (SEWRPC)
 - Madison Area Transportation Planning Board (MATPB)

TSM&O Capability Maturity Model

Six Dimensions

- Business Processes
- Systems & Technology
- PerformanceMeasurement
- Culture
- Organization / Workforce
- Collaboration

Relevant Examples

- Develop this new traffic infrastructure process
- Peer review and working group
- Annual cycle with updates and linkages to other WisDOT business processes
- Truck parking, ITS architecture, regional coordination, etc.

WisDOT received a federal grant to advance these

External Systems & Data Sources

INFRASTRUCTURE SYSTEMS

(Traffic Systems Unit)

COMMUNICATION &

Real Time Information

Real Time Decision-making

MANAGEMENT & OPERATIONS SYSTEMS

(Traffic Management Unit)

Long Term
Improvements
& Development

PERFORMANCE REPORTING

- ✓ Reduce Delay
- ✓ Increase Reliability
- ✓ Actively Manage

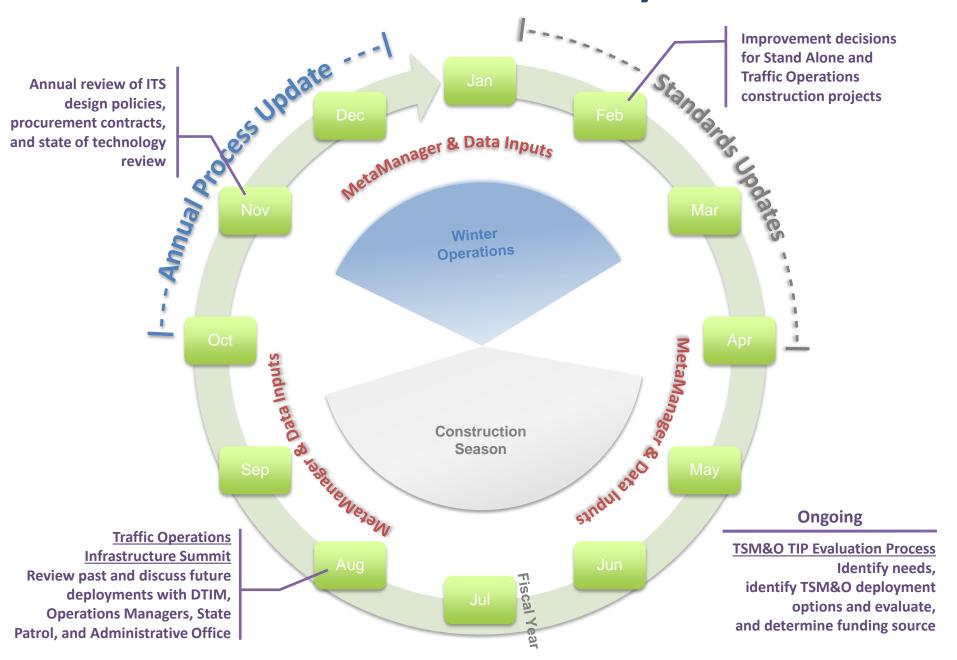
Long Term Improvements & Development

LONG-TERM DECISION MAKING (TSM&O Infrastructure Planning)

Freeways/Expressways

Arterials

BUDGET & ORGANIZATIONAL SUPPORT

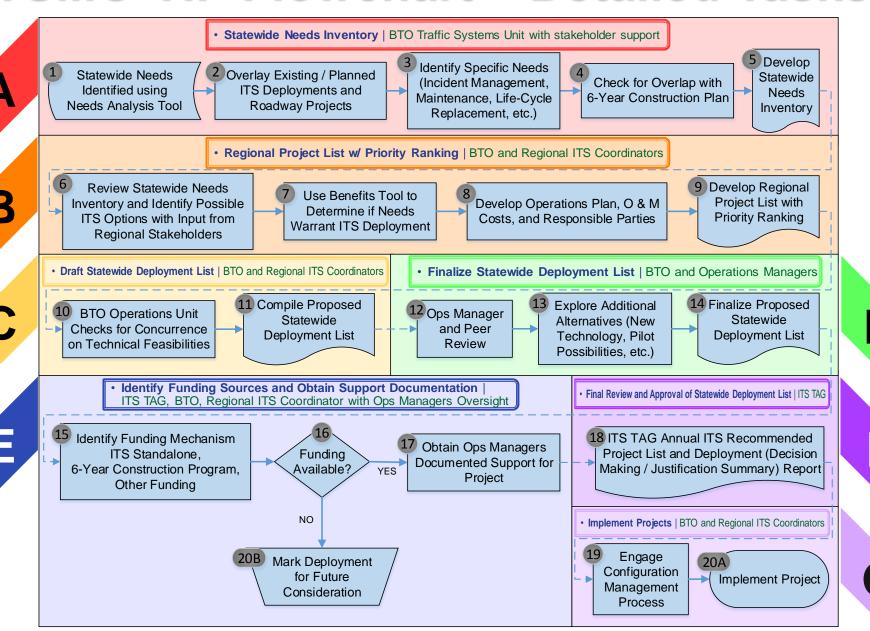


TSM&O-TIP Objectives

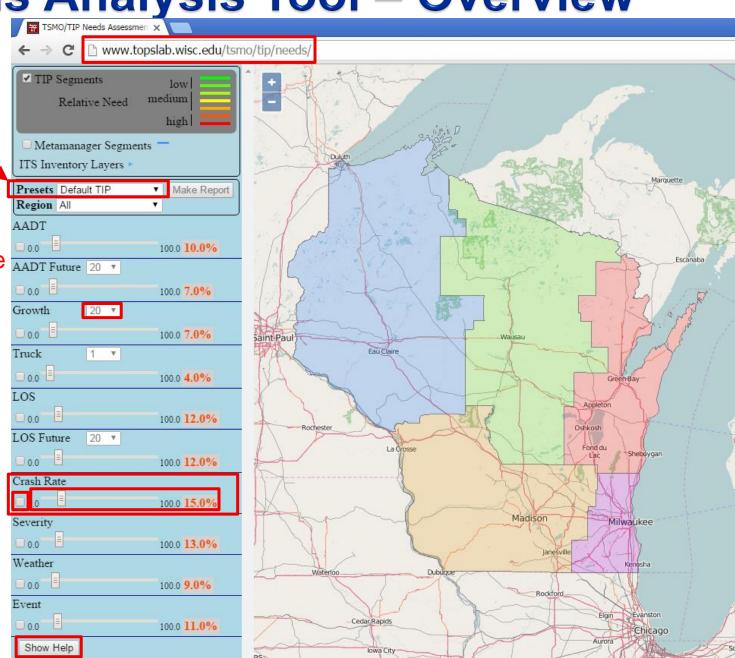
- Develop a traffic infrastructure deployment <u>process</u> focused on:
 - Continuous performance improvement
 - Annual process open to technological advances
 - Current and short-term needs
 - Needs analysis tool to identify system issues
 - Decision making support
 - Process checklist and benefits analysis tool
 - Process documentation
 - Project justification and historical reference
- Support federal requirements

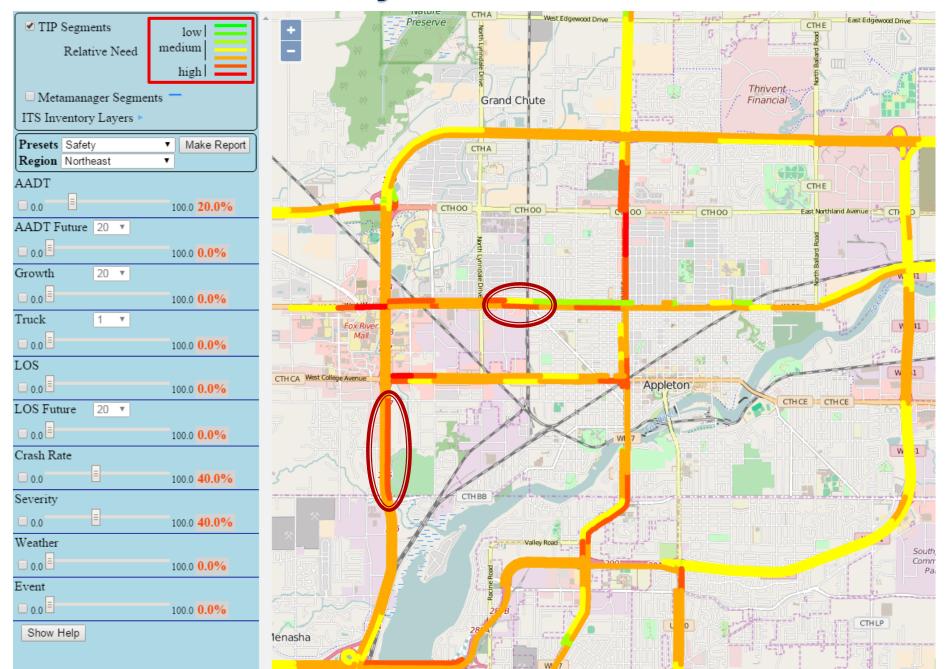
TSMO-TIP Annual Cycle

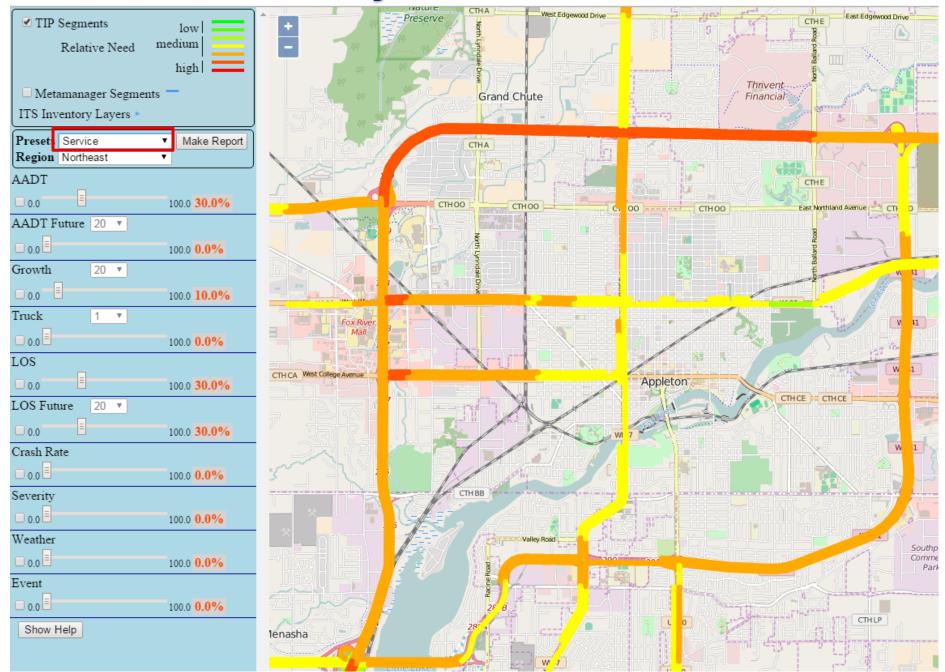
3. TSMO-TIP Process Overview

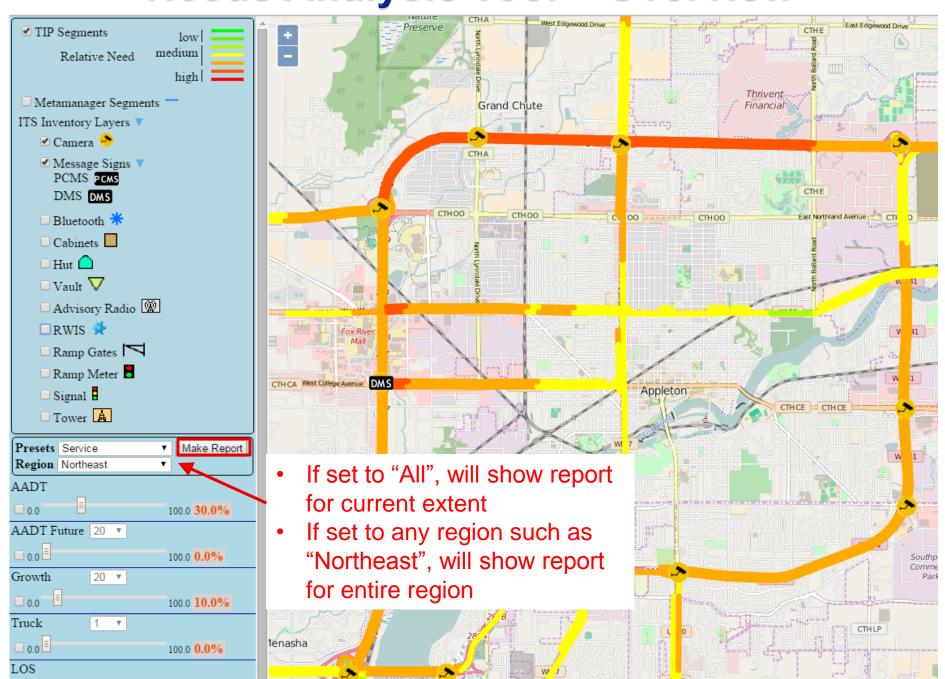

TSMO-TIP Flowchart – Process Tasks

- - Statewide Needs Inventory | BTO Traffic Systems Unit with stakeholder support
 - Regional Project List w/ Priority Ranking | BTO and Regional ITS Coordinators
 - Draft Statewide Deployment List | BTO and Regional ITS Coordinators
 - Finalize Statewide Deployment List | BTO and Operations Managers
 - Identify Funding Sources and Obtain Support Documentation | ITS TAG et al.
 - Final Review and Approval of Statewide Deployment List | ITS TAG
 - Implement Projects | BTO and Regional ITS Coordinators


C


D

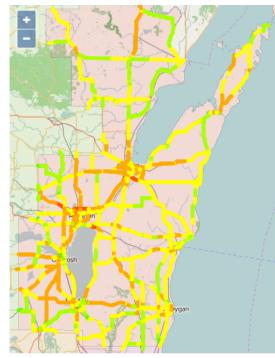

TSMO-TIP Flowchart – Detailed Tasks



Presets:
Default TIP
Safety
Mobility – Present
Mobility – Future
Service
Freight Performance

pdp_id	hwy_dir	weighted score	aadtyr_1	aadtyr_20	crash_rate	crash_severity	event	growth_20	losyr_l	losyr_20	trkdyr_	l weathe	r
17823	125E	1.8496	35450	41360	1036.33	<u>94</u>	6.0	16.67	6.36	6.62	8.8	43.0	
17840	125W	1.8496	35450	41360	<u>1946.65</u>	<u>180</u>	6.0	16.67	6.36	6.62	8.8	43.0	
17510	113N	1.8122	4430	5330	413.34	12	6.0	20.32	2.68	2.72	7.2	42.0	
17527	113S	1.8122	39300	44390	<u>312.7</u>	<u>66</u>	16.0	12.95	2.54	2.66	8.8	47.0	
16996	096W	1.7628	30780	34900	642.7	52	6.0	13.39	6.39	6.6	7.2	43.0	
16908	096E	1.7628	30780	34900	514.16	38	6.0	13.39	6.39	6.6	7.2	43.0	
16613	094W	1.7381	38910	46710	23.76	10	8.0	20.05	2.73	3.13	8.1	41.0	
16695	094W	1.7381	23940	28770	50.87	25	2.0	20.18	2.51	2.91	21.5	45.0	
8665	041S	1.7182	66590	82380	75.34	83	6.0	23.71	4.47	5.98	12.4	43.0	
8456	041N	1.7182	66590	82380	27.67	18	6.0	23.71	4.47	5.98	12.4	43.0	
8455	041N	1.7182	66590	82380	0.0	0	6.0	23.71	4.47	5.98	12.4	43.0	
8666	041S	1.7182	66590	82380	0.0	0	6.0	23.71	4.47	5.98	12.4	43.0	
17258	102N	1.6903	1180	1430	48.66	2	1.0	<u>21.19</u>	1.6	1.64	7.1	52.0	
17564	114E	1.6903	14140	21750	47.5	36	6.0	<u>53.82</u>	4.86	5.99	8.6	42.0	
8395	041N	1.6657	44260	56560	43.08	28	6.0	27.79	3.08	3.76	12.4	39.0	
8189	040N	1.6657	690	790	0.0	0	1.0	14.49	2.0	2.06	9.5	49.0	

Default shows orange or higher score segments


Can show all

Parameter Weights: Service

- aadtyr 1: 30%
- aadtyr_20:0%
- crash_rate: 0%
- crash_severity: 0%
- event: 0%
- growth_20: 10%
- losyr_1: 30%
- losyr_20: 30%
- trkdyr_1: 0%
- weather: 0%

pdp_id	hwy_dir	weighted score	aadtyr_1	aadtyr_20	crash_rate	crash_severity	event	growth_20	losyr_l	losyr_20	trkdyr_	weather
8480	041N	2.0907	79070	97690	57.05	75	12.0	23.55	5.62	7.0	12.4	44.0
8371	041N	2.0597	31310	35820	27.24	<u>9</u>	7.0	14.4	2.5	2.8	12.1	39.0
11666	053S	1.8932	9220	10680	18.99	5	1.0	15.84	1.84	1.91	13.7	52.0
8478	041N	1.8885	70110	87260	75.17	79	11.0	24.46	4.82	6.6	12.4	43.0
17840	125W	1.8496	35450	41360	<u>1946.65</u>	<u>180</u>	6.0	16.67	6.36	6.62	8.8	43.0
17823	125E	1.8496	35450	41360	1036.33	<u>94</u>	6.0	16.67	6.36	6.62	8.8	43.0
8211	040S	1.8344	1540	1650	0.0	0	2.0	7.14	2.47	2.51	9.5	42.0
17527	113S	1.8122	39300	44390	<u>312.7</u>	<u>66</u>	16.0	12.95	2.54	2.66	8.8	47.0
17510	113N	1.8122	4430	5330	413.34	12	6.0	20.32	2.68	2.72	7.2	42.0
16908	096E	1.7628	30780	34900	514.16	38	6.0	13.39	6.39	6.6	7.2	43.0
16996	096W	1.7628	30780	34900	642.7	52	6.0	13.39	6.39	6.6	7.2	43.0
4635	023W	1.7565	31580	37680	636.55	20	7.0	19.32	5.77	6.49	8.8	38.0
2907	015W	1.7501	14300	18970	0.0	0	5.0	32.66	5.32	5.96	12.3	42.0
4628	023W	1.7483	17790	21810	325.69	5	7.0	22.6	6.35	6.6	8.8	39.0
2880	015E	1.7444	16310	19430	154.95	122	5.0	19.13	4.45	5.0	12.3	41.0
16613	094W	1.7381	38910	46710	23.76	10	8.0	20.05	2.73	3.13	8.1	41.0

Show all Segments

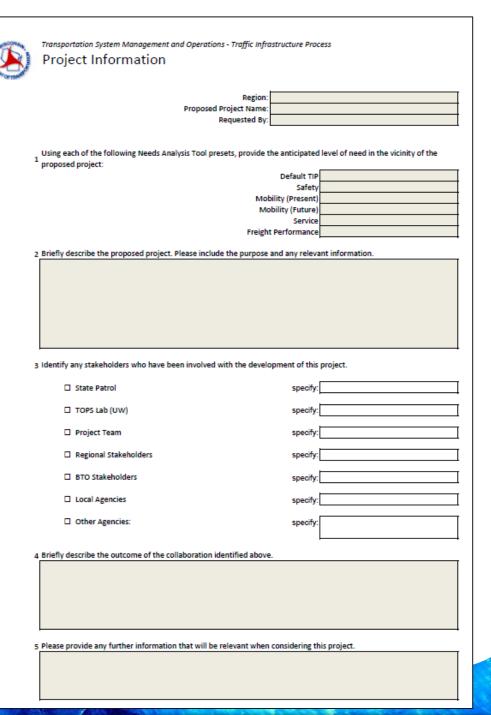
Northeast Region

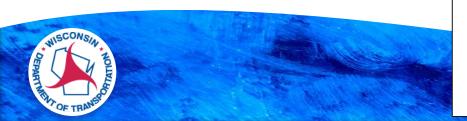
Parameter Weights: Service

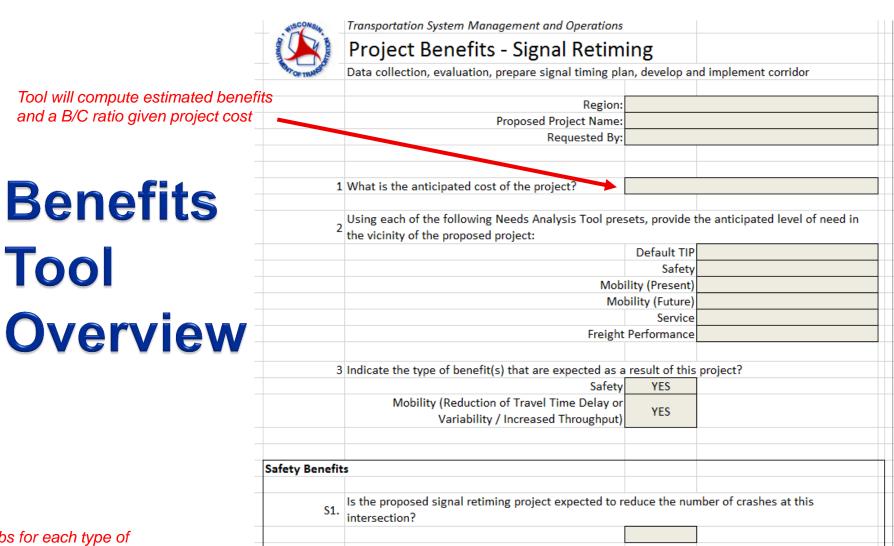
- aadtyr 1: 30%
- aadtyr_20:0%
- crash rate: 0%
- crash_severity: 0%
- event: 0%
- growth 20: 10%
- losyr 1: 30%
- losyr_20: 30%
- trkdyr 1:0%
- weather: 0%
- Needs Tool Link: http://www.topslab.wisc.edu/tsmo/tip/needs/

Scores can be exported by copying table into Excel

Can show scores for entire region


Benefits Tool


- Calculates estimated benefits (\$) for a given project
 - Signal install, replace, rehab, retrofit, retiming, etc.
 - LED replacement
 - Intersection communication
 - Software
 - ITS device replacement
 - DMS
 - CCTV
- Excel-based tool where user supplies inputs (many via drop-down menus)



Project Information

 Documents project information and coordination efforts

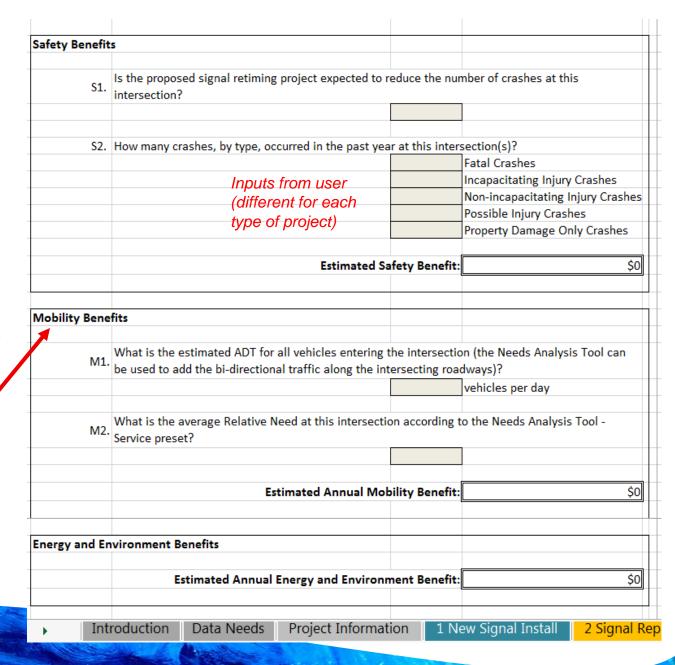
Data Needs

Introduction

S2. How many crashes, by type, occurred in the past year at this intersection(s)?

Project Information

Tabs for each type of project (e.g. CCTV, DMS, intersection comm)


Fatal Crashes

New Signal Install

Incapacitating Injury Crashes

Benefits Tool Overview

Tool will calculate estimated benefits for safety, mobility, energy/environment, and productivity, if applicable.

What data does the user need to obtain to calculate benefits?

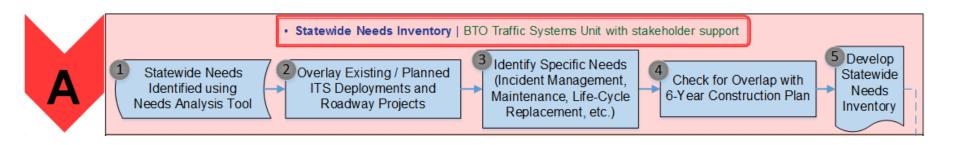
Transportation System Management and Operations - Traffic Infrastructure Process

Project Benefits - Data Needs

Tabs for each type of project (e.g. CCTV, DMS, intersection comm)

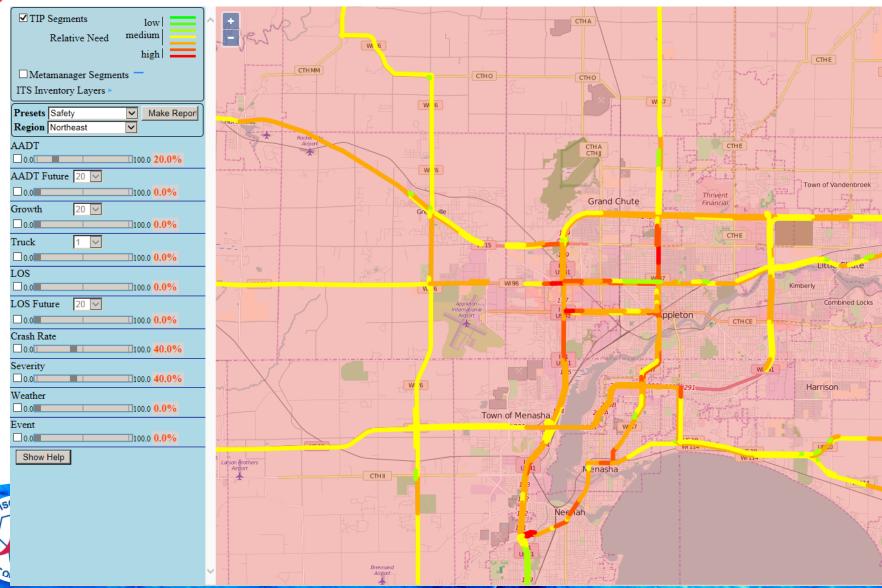
								•					
	Data Request	Project Type											
Anticipated Data Source		1	2	3	4	5	6	7	8	9	10	11	12
		New Signal	Signal	Signal	Signal	Signal	LED	Intersection	Software	ITS Device	DMS	Camera	Other
			Replacement	Rehab	Retrofit	Retiming	Replacement	Communication	Software	Replacement	DIVIS		
	Project Specific Description	X	X	Х	X	X	X	X	X	X	X	X	X
Hear Parnanca	ITS Warrant Information										Х	X	
	Signal Warrant Information												
	Urban/Rural	X	X		X								
	Events per Year										X	X	
Estimated	Average Event Duration										Х	X	
Estimateu	Average Travel Time Savings										Х	X	
	Peak Period Travel Time Reduction	X											
Asset Management /	Maintenance Tickets and Cost		x	х	x			x		x			
Maintenance Reports	Maintenance Tickets and Cost		Χ.	Χ.	X			×		Α			
Needs Analysis Tool	Crash Data by Type	X	X		X	X		X			Χ	X	
	Average Vehicles Entering Intersection	X	X		X	X		X					
	Average Daily Traffic Volumes Per Area										Χ	X	
	Relative Need - Level of Service Preset		Х		X	X							
		•						•					

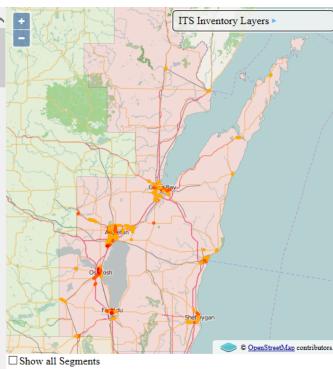
Where will the user be pulling data from?


4. Walking through the Process

Flowchart Walkthrough

- All 20 Steps
- Format of Discussion (for each step)
 - Step overview
 - Case study example
 - Questions
- We'll monitor the chat box throughout and answer questions after each step




Step 1: Statewide Needs Identified using Needs Analysis Tool

Step 1: Statewide Needs Identified using Needs Analysis Tool

							I	1		I		
pdp_id	hwy_dir	weighted score	aadtyr_l	aadtyr_20	crash_rate	crash_severity	event	growth_20	losyr_1	losyr_20	trkdyr_l	weather
9720	045S	3.8236	11760	14350	8046.19	21	8.0	22.02	2.09	2.14	7.3	36.0
9721	045S	3.8197	14980	17320	7204.86	32	8.0	15.62	3.17	3.24	6.3	36.0
9730	045S	3.6141	3950	4240	4079.07	<u>138</u>	7.0	7.34	3.46	3.49	8.3	39.0
17527	125W	<u>3.3731</u>	35450	41360	<u>1946.65</u>	<u>180</u>	6.0	16.67	6.21	6.57	4.1	43.0
18366	151N	3.2841	5210	5920	<u>5723.66</u>	46	6.0	13.63	1.0	1.0	6.7	41.0
9449	045N	3.1848	11760	14350	<u>1937.04</u>	<u>202</u>	8.0	22.02	2.09	2.14	7.3	36.0
17274	114W	3.1833	25250	29960	<u>1842.9</u>	<u>167</u>	6.0	18.65	3.52	3.8	4.7	40.0
17275	114W	3.1677	4210	4530	<u>7933.57</u>	3	6.0	7.6	3.33	3.37	4.1	40.0
6374	032S	3.1521	7820	9290	<u>7291.35</u>	4	5.0	18.8	1.52	1.58	8.3	44.0
4009	021E	2.96	11970	14600	<u>3201.55</u>	85	8.0	21.97	3.61	3.68	7.2	36.0
6357	032S	<u>2.9535</u>	9100	10670	6205.49	6	12.0	17.25	2.9	3.0	8.3	43.0
6359	032S	<u>2.9535</u>	9100	10670	6205.49	6	12.0	17.25	2.9	3.0	8.3	43.0
16611	096E	2.937	26920	28940	1264.55	<u>179</u>	6.0	7.5	4.14	4.29	4.6	43.0
9417	045N	2.8789	8230	8840	<u>1770.7</u>	<u>137</u>	7.0	7.41	3.53	3.59	8.3	39.0
6193	032N	2.8426	9100	10670	4343.85	29	11.0	17.25	2.9	3.0	8.3	43.0
6207	032N	<u>2.7752</u>	2010	2450	4669.99	35	12.0	21.89	1.0	1.0	4.1	44.0
9722	045S	<u>2.727</u>	9540	10260	2833.74	67	9.0	7.55	2.13	2.19	8.3	36.0
9278	044N	2.724	13890	14310	1002.11	<u>192</u>	9.0	3.02	5.36	5.78	6.6	36.0
17235	114E	2.7008	25250	29960	<u>1606.63</u>	114	6.0	18.65	3.52	3.8	4.7	40.0
9282	044S	2.6968	10860	13250	3880.88	28	9.0	22.01	2.68	2.71	7.7	35.0
9851	047N	2.632	21430	25000	769.68	<u>215</u>	6.0	16.66	3.96	4.15	5.2	43.0
6187	032N	<u>2.5709</u>	18830	21730	1548.89	<u>124</u>	12.0	15.4	2.79	2.85	5.5	43.0
19650	310W	2.5465	4010	4870	<u>4574.68</u>	10	4.0	21.45	2.61	2.97	7.6	41.0
9440	045N	2.5305	9030	9700	<u>2960.53</u>	35	9.0	7.42	6.63	6.71	4.1	36.0
9413	045N	2.5031	3390	3640	3423.97	41	7.0	7.37	2.61	2.62	8.3	39.0
13701	067N	2.5025	4390	5150	3902.74	25	6.0	17.31	3.17	3.17	8.3	48.0
4576	023W	2.4721	27400	32540	1039.76	<u>129</u>	7.0	18.76	4.17	5.61	4.6	38.0
9442	045N	2.4367	2450	2630	3789.39	30	9.0	7.35	3.09	3.09	4.1	36.0
2868	015E	2.4161	25850	31540	673.61	<u>165</u>	6.0	22.01	3.75	4.69	4.7	44.0
4479	023E	2.3933	27400	32540	873.8	<u>135</u>	7.0	18.76	4.17	5.61	4.6	38.0

Northeast Region

Parameter Weights: Safety

- aadtyr 1: 20%
- aadtyr 20:0%
- · crash rate: 40%
- · crash severity: 40%
- event: 0%
- · growth 20:0%
- losyr 1:0%
- · losyr 20:0%
- trkdvr 1:0%
- · weather: 0%

Step 1: Statewide Needs Identified using Needs Analysis Tool

- Reports generated by region and preset
- Presets include TIP default, safety, mobility (present and future), service, and freight performance
- Thirty reports generated and evaluated
- Top areas in each report identified as a "needs area"

Task A – Steps 2-5

- Step 2: Overlay existing / planned ITS deployments and roadway projects
 - Done on Needs Analysis Tool
 - Map printed for each "Needs Area"
- Step 3: Identify specific needs
 - e.g., Incident Management, Maintenance, Life-Cycle Replacement, etc.
 - Using engineering judgement and input from regions
- Step 4: Check for overlap with 6-Year Construction Plan
- Step 5: BTO develops Statewide Needs Inventory

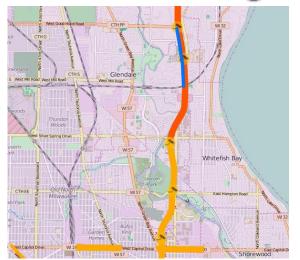
Step 1. Data Extraction from Needs Tool

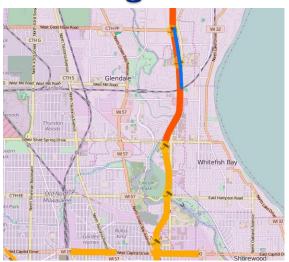
pdp_id	hwy_dir	weighted score	aadtyr_1	aadtyr_5	crash_rate	crash_severity	event	growth_20	losyr_1	losyr_20	trkdyr_l	weather
8290	041N	2.3096	133850	135980	4.8	10	27.0	7.54	<u>7.0</u>	7.0	15.4	46.0
9207	043N	2.1585	94130	97120	63.52	78	27.0	14.27	6.51	7.0	16.4	42.0
9456	043S	2.1585	94130	97120	77.95	87	27.0	14.27	6.51	7.0	16.4	42.0
9457	043S	2.1585	94130	97120	34.39	10	27.0	14.27	6.51	7.0	16.4	42.0
9206	043N	2.1585	94130	97120	131.82	25	27.0	14.27	6.51	7.0	16.4	42.0
8291	041N	2.1343	133850	135980	52.8	44	27.0	7.54	<u>7.0</u>	7.0	15.4	45.0
8294	041N	2.1089	133200	136740	67.7	6	27.0	11.83	5.39	6.28	18.9	45.0
8293	041N	2.1089	133200	136740	61.62	<u>141</u>	27.0	11.83	5.39	6.28	18.9	45.0
8279	041N	1.999	109490	112150	24.85	9	22.0	10.73	4.34	4.86	22.3	44.0
8278	041N	1.999	109490	112150	102.73	16	22.0	10.73	4.34	4.86	22.3	44.0
8277	041N	1.999	109490	112150	48.66	71	21.0	10.73	4.34	4.86	22.3	44.0
9341	043S	1.9858	<u>45920</u>	48680	32.91	10	10.0	26.02	3.25	3.79	8.8	43.0
9342	043S	1.9858	<u>45920</u>	48680	25.87	8	10.0	26.02	3.25	3.79	8.8	43.0
9340	043S	1.9858	43490	46050	29.06	33	10.0	25.48	3.21	3.72	13.9	44.0
9458	043S	1.9831	94130	97120	69.84	75	27.0	14.27	6.51	7.0	16.4	42.0

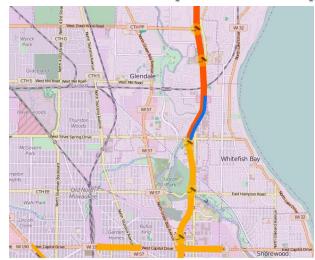
Example – Southeast Region "Mobility (Present)" – Highest need segments

Southeast Region – 6 Highest Needs Areas (Overall)

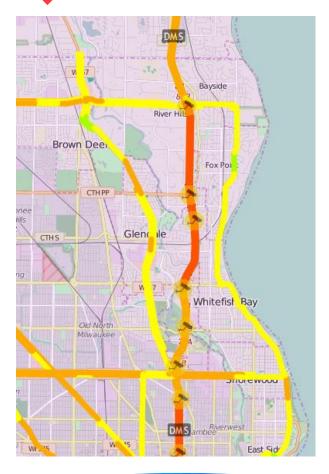
I-94 at Zoo Interchange, Eastbound and Westbound are two highest needs




I-43/41/894 (Airport Freeway) third highest need



Southeast Region – 6 Highest Needs Areas (Overall)



I-43 near Glendale, two northbound and one southbound segment are ranked fourth through sixth highest needs

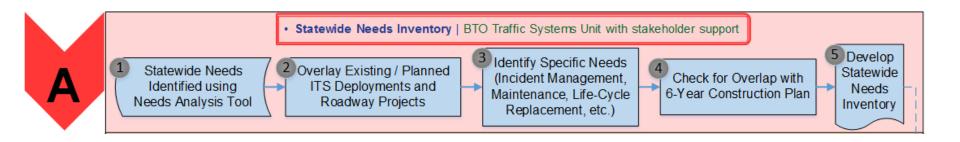
Closer analysis reveals that many more neighboring segments are in the top 50 overall highest needs, with both directions being a problem

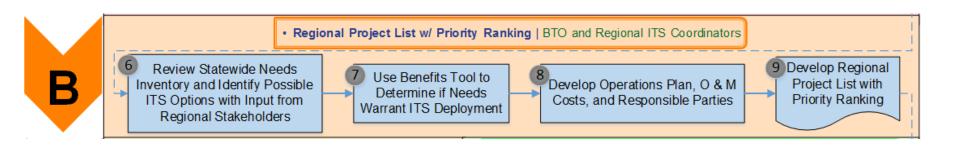
Step 2. Overlay Current Deployments

- Two DMS, 9 miles apart, Southbound only
- 7 cameras

Step 3. Identify Specific Needs through further review

- Review specific problems on each segment
- Probe data study
- Camera data study
- Other considerations

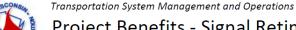



- Step 4: Check for overlap with 6-Year Construction Plan
 - Note whether there is overlap or not
 - If overlap, identify project ID and type
 - Looking to incorporate 6-Year Construction Plan in Needs Tool
- Step 5: BTO develops Statewide Needs Inventory
 - Example included one of many needs identified in the inventory

Questions?

B

Task B Overview


- Step 6: Review Statewide Needs Inventory and identify possible ITS options with input from regional stakeholders
- Step 7: Use Benefits Tool to determine if needs warrant ITS deployment for specific project
 - Developed by Kimley-Horn
 - Most inputs come from regional knowledge of the area or the Needs Analysis Tool
 - Some inputs require engineering judgement and estimation
- Step 8: Develop Regional Operations Plan, O & M Costs, and Responsible Parties
- Step 9: Regions develop Regional Project List with priority ranking

Step 7 **Benefits** Tool

Project Benefits - Signal Retiming

Data collection, evaluation, prepare signal timing plan, develop and implement corridor coordination plan

Region: Proposed Project Name: Requested By:	
What is the anticipated cost of the project?	
Using each of the following Needs Analysis Tool presets, provide the a vicinity of the proposed project:	nticipated level of need in the
Default TIP	
Safety	
Mobility (Present)	
Mobility (Future)	
Service	
Freight Performance	
Indicate the type of benefit(s) that are expected as a result of this projection. Safety YES Mobility (Reduction of Travel Time Delay or Variability / YES Increased Throughput)	ect?

Safety Benefits	
S1.	Is the proposed signal retiming project expected to reduce the number of crashes at this intersection?
S2.	How many crashes, by type, occurred in the past year at this intersection(s)?
	Fatal Crashes
	Incapacitating Injury Crashes
	Non-incapacitating Injury Crashes
	Possible Injury Crashes
	Property Damage Only Crashes
	Estimated Safety Benefit: \$0

Mobility Benefits

 $What is the \ estimated \ ADT for \ all \ vehicles \ entering \ the \ intersection \ (the \ Needs \ Analysis \ Tool \ can \ be \ used)$ to add the hi-directional traffic along the intersecting roadways)?

Step 6. Review Statewide Needs Inventory and identify possible ITS options with input from regional stakeholders

- Through meetings with Southeast Region and other stakeholders, determine possible alternatives
 - Install northbound DMS(s)
 - Install southbound DMS in between current DMSs
 - Others?
- Choose an alternative (for each needs area)
 - Install northbound DMS just south of Exit 78

Step 7: Use
Benefits Tool to
determine if needs
warrant ITS
deployment for
specific project

Project Information

Thursd	Proje	ect Information		
OF THINK				
		Region:		Southeast
		Proposed Project Name:	Northboun	d DMS on I-43 just south of Exit 7
		Requested By:		Jon Riehl
		ch of the following Needs Analysis Tool presets, pr	ovide the ant	icipated level of need in the
	vicinity	of the proposed project:	Default TIP	MEDIUM
			Safety	HIGH
		Mobil	ity (Present)	HIGH
		Mob	ility (Future)	MEDIUM
			Service	HIGH
		Freight I	Performance	MEDIUM
:	2 Briefly d	escribe the proposed project. Please include the pu	urpose and ar	ny relevant information.
	Install D	MS on I-43 northbound just south of Exit 78 (W. Silve an alternate route if I		to offer Wisconsin State Route 32

Step 7: Use
Benefits Tool to
determine if needs
warrant ITS
deployment for
specific project

Project Information

П	State Patrol	specify:	
	TOPS Lab (UW)	specify:	
	Project Team	specify:	
	Regional Stakeholders	specify:	
	BTO Stakeholders	specify:	
	Local Agencies	specify:	
	Other Agencies:	specify:	
Briefly	describe the outcome of the collaborati	on identified above.	
Please	provide any further information that wi	II be relevant when con	nsidering this project.
			<u> </u>

				_	_
	HISCONS	Transportation Sy	stem Management and Operation	ns	
	CEPHER	Project Ju	ustification - ITS D	MS Warrants	
Ť	OF THAT	New DMS deplo	yment.		
Project cost (cou	ld he i	from	Region:		Finia
•			Proposed Project Name:	DMS Deployment on I-43 northbound @ E	exit
RITA ITS costs d	ataba.	se)	Requested By:	78 Jon Riehl	
			icipated cost of the project		
DMC Drainet		1 (total design, co	•	\$100,000	
DMS Project		communication	cost)?		
		DI	- +b - 18/	A. dataibish	
		,	summary of your results is list	to determine which warrant best aligns to ted here:	
Benefit		and project. The	W1, Weather Conditions		
	,,				
	se wiii	l be updated	W3, Traffic Control		
Sheet base	ed on	responses	W4, Special Events		
oneer to the			W5, Parking Availability	NOT WARRANTED	
10 111	e war	rants below	W6, Public Transportation	NOT WARRANTED	
	DMS W	/arrant Analysis:			
This project is to	DMS	Warrant #1 - To Inform	Travelers of Weather Conditions		
• •	Consi	ideration			Response
inform travelers of		If the location is	s prone to weather situations	that travelers would not otherwise be for	ewarned about
This project is to inform travelers of	DMS	Warrant #1 - To Inform	Travelers of Weather Conditions s prone to weather situations	that travelers would not otherwise be for	

This pro inform traffic conditions (DMS Warrant #2)

_						
Cons	idera	ation				Response
1	1	If the location is prone to weather situations (e.g. spots where fog regularly forms, bridges from approaches).				NO
- 2	2	If there is available road weather information	for the area downs	tream of the candidate D	MS location.	NO
3	3	If there is the capability (either manually by s system) to create event specific descriptions of		-		NO
4	4	If there is a need to disseminate event specif warning sign that says "Weather Alert When F		er than simply activating	a flashing	NO
	5	If there are options for either alternate routes travelers may wait out conditions.	or services, that mi	ght be described on the l	DMS, where	NO
(6	If flashing beacon signs have been tried and	not proven to genera	te responses from travel	ers.	NO
	7	If weather events contribute to a significant n impacts to travelers.	umber of crashes or	road closures which hav	e major	NO
				DMS Warrant #1 is:	NOT WAR	RANTED

DMS Project Benefit Sheet

DMS Warrant #2 - To Inform Travelers of Traffic Conditions Consideration Response. If the target area is monitored by CCTV cameras, traffic detectors, or another method of monitoring the 1 YES conditions, or has travel times for the downstream stretch of road. Events occurring in the area unexpectedly impact or impede traffic (e.g. close a lane, encounter slow 2 YES traffic in one or more lanes, or events on the shoulder) an average of at least two times per month. If there are acceptable alternate routes with capacity to accept vehicles that may deviate based upon the 3 YES information. If the location is a stretch of road where no alternate route are possible and travelers would benefit 4 NO from information describing the cause and/or extent of delays in order to relieve driver anxiety or 5 If there are horizontal or vertical curves that create safety issues when traffic is stopped unexpectedly. NO The route being considered for the DMS has on average at least 2 hours per day of peak period travel 6 YES where traffic flow exceeds 1.100 veh/hr/lane. The route being considered for the DMS has on average experienced conditions considered Level of 7 YES Service C. The route being considered for the DMS experiences average annual daily traffic (AADT) of 16,800 for a 2 8 YES lane road; 33,600 for a 4 lane road; 50,400 for a 6 lane road, 67,200 for an 8 lane road. DMS Warrant #2 is:

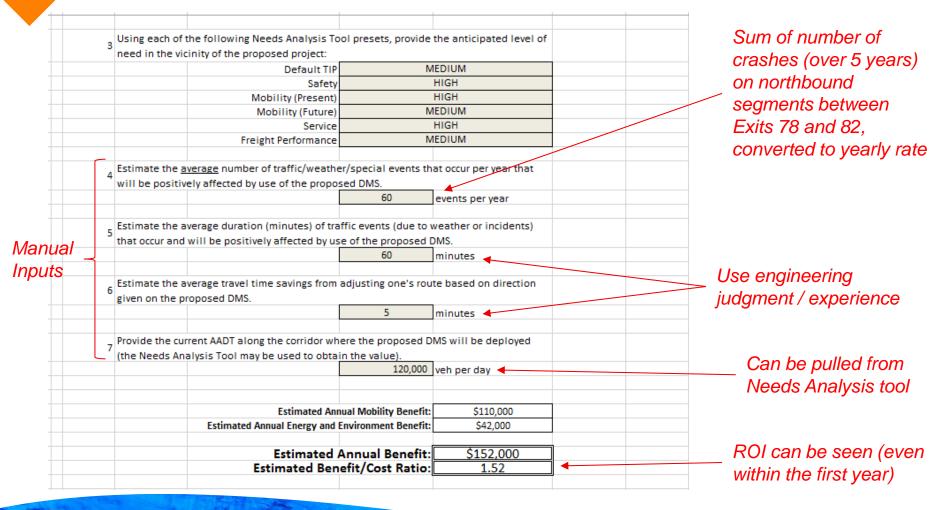
Can see ITS deployments such as CCTV on Needs Analysis Tool

Look at northbound incidents between Exits 78 and 82 (detour area)

WIS 32 offers a parallel detour

Estimate from AADT and relative service levels on Needs Analysis tool

DMS Project Benefit Sheet


onside	ration				Response
1	The candidate location is upstream of an area expected to cause at least 15 minutes of delay			that are	NO
2	If the candidate location is upstream of traffic expected to change more frequently than once		ction/maintenance activiti	es that are	NO
3	If the posted work zone speed limit is greater t	than 45 MPH.	_		NO
			DMS Warrant #3 is:	NOT WAR	RANTED
MS Wa	rrant #4 - Special Events				
MS Wa					Response
	ration If the location contains a venue that houses tid	cketed events (typi	cally with rapid and tight a	arrival	Response
onside	ration	weekday (M-F) tio			
onside 1	ration If the location contains a venue that houses tic patterns for a specified start time). If the event venue typically houses at least two	weekday (M-F) tions the season).	keted event per week (inc	luding	NO
nside 1 2	ration If the location contains a venue that houses tic patterns for a specified start time). If the event venue typically houses at least two seasonal sporting events that only occur during	weekday (M-F) tions g the season). events per year att	cketed event per week (inc	luding lore.	NO NO

Other warrants in spreadsheet – we aren't going to meet these...

B

Task B: Case Study Example

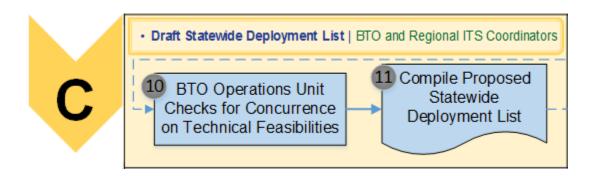
- Step 8: Develop Regional Operations Plan, O & M Costs, and Responsible Parties
 - For each project
 - Coordinate with regional stakeholders
 - Is WIS 32 alternate route prepared for traffic diversion
 - Other regional coordination opportunities
 - Complete necessary documentation
 - How does this deployment fit within current system

- Step 9: Regions develop Regional Project List with priority ranking
 - Regional staff ranks regional projects
 - Stakeholder input
 - Engineering judgment
 - Other considerations

Questions?

Review Statewide Needs
Inventory and Identify Possible
ITS Options with Input from
Regional Stakeholders

Regional Stakeholders


Regional Project List w/ Priority Ranking | BTO and Regional ITS Coordinators

Develop Operations Plan, O & M
Costs, and Responsible Parties

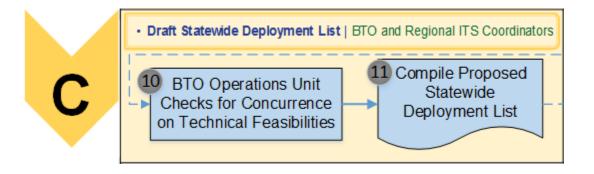
Priority Ranking

Priority Ranking

C

Task C Overview

- Step 10: Regional ITS coordinators work with BTO to check for concurrence on technical feasibilities
 - Review projects and verify
 - Has technology been deployed before?
 - Is there still ability to implement technology?
 - Review Annual Evaluation Report on TSM&O Technologies to determine pros/cons and costs of implementing new technologies
- Step 11: BTO compile proposed Statewide Deployment List



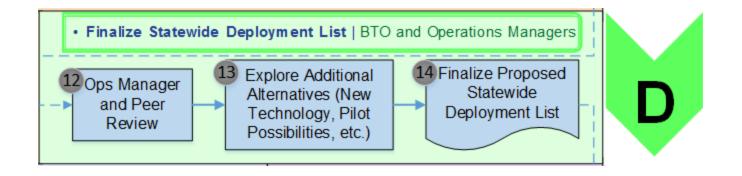
- Step 10: Regional ITS coordinators work with BTO to check for concurrence on technical feasibilities
 - For this example, DMS has been deployed before and the ability still exists to deploy and maintain this technology
- Step 11: BTO compile proposed Statewide Deployment List
 - Compile this and other regional deployment lists into one statewide list, modifying projects on the list as necessary

Questions?

D

Task D Overview

- Step 12: Ops Managers and peers review list
- Step 13: Additional alternatives are explored
 - New technologies or pilot possibilities
- Step 14: BTO created finalized Proposed Statewide Deployment List


D

Task D: Case Study Example

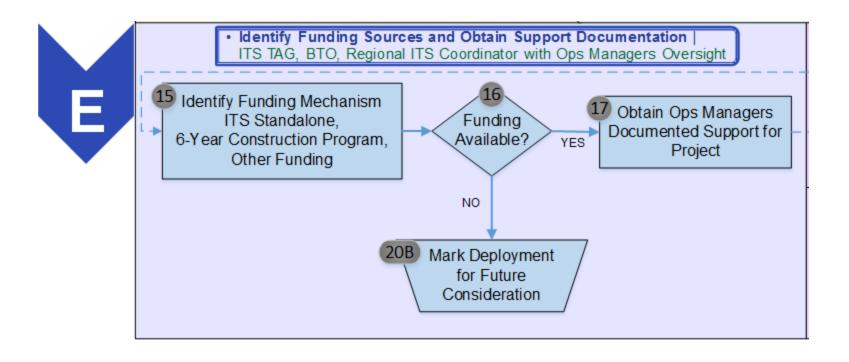
- Step 12: Ops Managers and peers review list
- Step 13: Additional alternatives are explored
 - Let's say BTO has been working on a probe data project and decide to implement a new travel time app
 - This app is determined to supplement or eliminate this project
 - Perhaps the decision is made to table this DMS deployment for a year to see if their travel time app solves the need
- Step 14: BTO creates finalized Proposed Statewide Deployment List
 - Similar to previous list, modifying projects as necessary

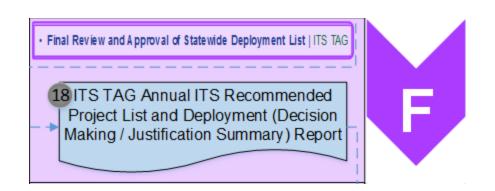
Questions?

 Identify Funding Sources and Obtain Support Documentation ITS TAG, BTO, Regional ITS Coordinator with Ops Managers Oversight 16 15 Identify Funding Mechanism Obtain Ops Managers ITS Standalone, Funding Documented Support for 6-Year Construction Program, Available? YES Project Other Funding NO Mark Deployment for Future Consideration

Task E Overview

- Step 15: Identify funding mechanism for each project
 - 6-Year Construction Program
 - Signals and ITS Standalone
 - Other Funding
 - No Funding?
- Step 16: Funding available?
- Step 17: Obtain Ops Managers documented support for project

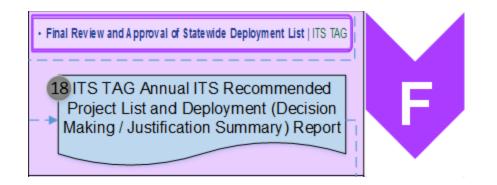



- Step 15: Identify funding mechanism for each project
 - Let's hypothetically say that the DMS was selected on the finalized Proposed Statewide Deployment List
 - Check for funding and decide that this will be funded through ITS Standalone
- Step 16: Funding available? → Yes
- Step 17: Obtain Ops Managers documented support for project
 - Complete documentation for this and each other regional project

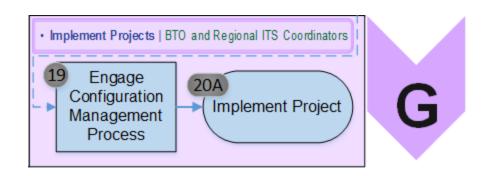
Questions?

Task F Overview

Step 18: ITS TAG review and completion of Annual ITS Recommended Project List and Deployment Report



Task F: Case Study Example


- Step 18: ITS TAG review and completion of Annual ITS Recommended Project List and Deployment Report
 - ITS TAG reviews example project and agrees that it makes sense to deploy the DMS
 - Project (and others) are added to Final Deployment List

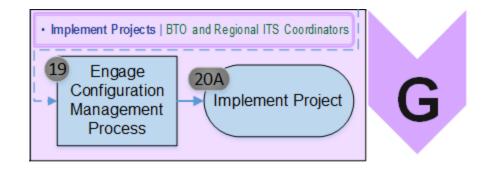
Questions?

G

Task G: Overview

Step 19: Engage Configuration Management Process

Step 20: Implement Project


G

Task G: Case Study Example

- Step 19: Engage Configuration Management Process
 - Exact specifications of the project are determined
 - All parties involved in implement, operating, and maintaining the deployment are engaged
- Step 20: Implement Project
 - DMS is installed, added to the system, operated, and maintained

Questions?

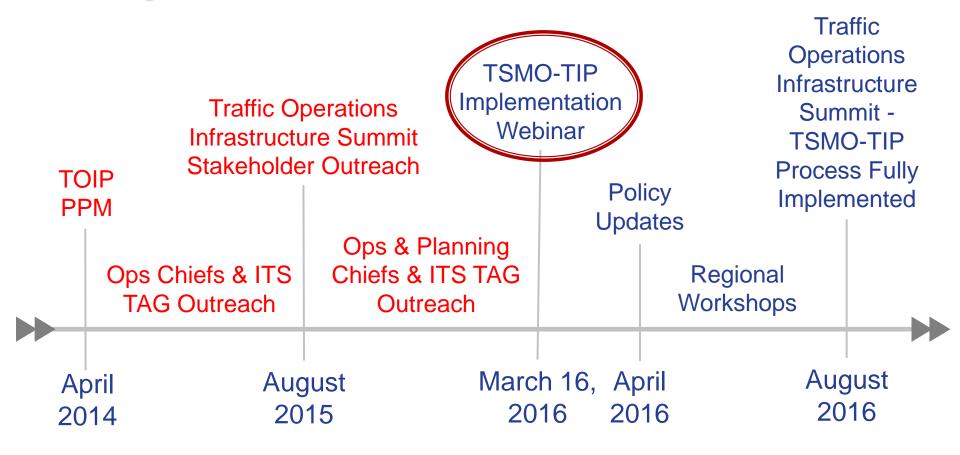
TSMO-TIP Flowchart – Process Tasks

- Statewide Needs Inventory | BTO Traffic Systems Unit with stakeholder support
 - Regional Project List w/ Priority Ranking | BTO and Regional ITS Coordinators
 - Draft Statewide Deployment List | BTO and Regional ITS Coordinators
 - Finalize Statewide Deployment List | BTO and Operations Managers
 - Identify Funding Sources and Obtain Support Documentation | ITS TAG et al.
 - Final Review and Approval of Statewide Deployment List | ITS TAG
 - Implement Projects | BTO and Regional ITS Coordinators

C

D

5. Next Steps



Webinar Objectives

- Explain the TSMO-TIP Process
- Describe how the process will help WisDOT and your region deploy TSM&O infrastructure in a more efficient and documented way
- Gain regional buy in or identify items of SIGNIFICANT concern
- Share process implementation schedule

Implementation Timeline

Stakeholder Outreach

Next Steps

- Updated policy in development for traffic supervisor review
- Provide final comments on process by April 1
- BTO will hold regional workshops April-July
- August summit to fully implement process
- New projects going forward must go through this process

Final Questions?

Additional Resources

- ▶ TSMO-TIP Temporary Webpage
 - http://www.topslab.wisc.edu/tsmo/tip/
 - All current documentation
 - Needs Analysis Tool
 - Benefits Tool
 - Instructional Support
 - Recorded Webinar

TSMO-TIP Contacts

Mark Lloyd, PE

WisDOT Bureau of Traffic Operations ITS Planning Engineer Mark.Lloyd@dot.wi.gov | 414-224-1947

David Karnes, PE

WisDOT Bureau of Traffic Operations
Traffic Systems Supervisor
David.Karnes@dot.wi.gov | 414-220-6804

